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WuXi NextCODE Global Predictive Analytics Initiative
deepCODE Deep Learning and Probabilistic Programming – Faster, cost-effective drug development

Adding value to drug discovery pipelines

– Drug target discovery and drug repurposing with novel ensemble computational intelligence 
strategies with integrated data platforms to identify 'causal' driver genes and molecular signal 
transduction networks

– Proof of concept for causal statistical learning approaches.

– Focus of Today’s Talk.

– Discover accurate integrated ‘omics’ profile that defines responders and non-responders for a 
drug in development

– Pharma partners can use our profile to decrease cost and time of phase II or phase III trials.

– WXNC can provide sequencing/ GOR database/ analysis/ deep learning.

– Note approach may work on small sample sizes - deep learning is powerful enough to 
potentially find drug response profiles even in phase I clinical trials with only 40 to 60 
patients on drug.

– Discover accurate integrated ‘omics’ profile that defines responders and non-responders for an 
approved expensive drug that is being underutilized

– Pharma can use our profile to justify use and reimbursement for their drug.

– A drug response profile could salvage the marketing of their drug.



Deep Learning

Neuromorphic 
Computing

Quantum 
Computing
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Tens of Features
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Facial Recognition & DeepCODE Feature Selection Analogy
(Facebook AI team’s Facial Recognition Algorithm boasts 97.25% Accuracy)



Features
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Our deepCODE dimensionality reduction methods enhance 
algorithm stability and allow us to handle tens of thousands 
of features without overfitting



A.I. and Precision Medicine
The computational power of modern A.I. technology is well-positioned to uncover new and 
actionable insights from the exponentially growing pool of biological data.  

The combination of several A.I. methods create a proprietary ensemble A.I. strategy capable of revealing novel 
patterns and causal dependencies in disparate and varied biological data. 

MACHINE & DEEP LEARNING

Intelligent algorithms capable of self-optimization to achieve 
incredible accuracy with complex, layered data

FEATURE LEARNING

The intelligent simplification of high-dimensional 
multi-omic data without loss of information

CAUSAL INFERENCE

Specialized statistical learning models capable of elucidating 
casual dependencies within biological data

NATURAL LANGUAGE PROCESSING

Intelligent scanning of sentence syntax to understand and 
validate findings in context, at scale



Enhanced Feature Reproducibility 
for Causal Statistical Learning  
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Multinomial Classification of 22 TCGA Cancer Types 
with Greater than 99.7% Accuracy  = Disease Recognition 



Prediction of overall survival across 20 different cancers types with 75% accuracy  

Large-scale clinical outcome study:
TCGA Pan-Cancer Time-dependent Survival Analysis 

Estimator of cumulative/dynamic AUC for right-censored time-to-event data: Uno et al. Journal of the American Statistical Association, 2007

Interpretation: Compensating for overall survival instead of disease specific survival

Data Matrix

 79k Molecular Features + 1 Clinical variable: Age

 6,122 Training Samples

 1,853 Testing Samples

 20 Cancer Types



Risk Stratification across 20 TCGA Cancers Types

Large-scale clinical outcome study: TCGA Pan-Cancer Survival Analysis 



nGOseq MEGENA

Bayesian 
Belief
Networks

Natural 
Language 
Processing

Blue = DNA Methylation

Red = mRNA

Orange = miRNA

Green = CNV

Pink = STV 

Purple Band = Degree NLP Network Connectivity

Black Band = Degree BNN Node Connectivity

Blue Band = Function Annotation

Red = BNN Driver Gene

Bold + Italic = Known Drug Target

*Driver Gene & Known Drug Target

#Driver Gene of Unknown Function

nGOseq
DNA Methylation = 8
mRNA = 14
CNV = 2

MEGENA
DNA Methylation = 3
mRNA = 7
STV = 1

*
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CDK4 KO confirmation by WB:

*Approved CDK4/6 inhibitors for 

metastatic ER-positive/HER2-negative 

breast cancer: Kisqali (Norvartis), 

Verzenio (Lilly), and Ibrance (Pfizer).
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CDK4 KO vs NT Growth curves



mRNA 90 KO vs NT Growth curves
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Phenotype Projection: Identifying Causal Drivers of Cardiovascular Disease 
(Hypertension, Vascular Hemorrhage, and Renal Failure)  

Research Collaboration with Yale Cardiovascular Research Center

Deep Learning, BBN Analysis, and NLP of Single Cell RNA-seq Data

(Ricard et al., JEM 2019) 



Research Collaboration with Yale Cardiovascular Research Center

Deep Learning, BBN Analysis, and NLP of Single Cell RNA-seq Data

(Ricard et al., JEM 2019) 

Phenotype Projection: Identifying Causal Drivers of Cardiovascular Disease 
(Hypertension, Vascular Hemorrhage, and Renal Failure)  



Identifying Causal Drivers of Cardiovascular Disease:
Aortic Aneurysm and Atherosclerosis 

(Chen et al., Nature Metabolism 2019; Li et al., JCI In press) 

Research Collaboration with Yale Cardiovascular Research Center

Deep Learning, BBN Analysis, and NLP of Single Cell RNA-seq Data



Identifying Causal Drivers of Cardiovascular Disease:
Analysis of Cellular Differentiation in Aortic Aneurysm 



Identifying Causal Drivers of Cardiovascular Disease:
Analysis of Cellular Differentiation in Aortic Aneurysm 

Novel means of tracking single cell differentiation across time. Holds significant commercial 
application in early phase clinical trials and drug efficacy studies.



Identifying Causal Drivers of Cardiovascular Disease:
Analysis of Cellular Differentiation in Aortic Aneurysm 

Novel means of tracking single cell differentiation across time. Holds significant commercial application in early 
phase clinical trials and drug efficacy studies. *Note degree of loss of Myh11 expression in distinct cell 
populations relative to two different experimental perturbation strategies.  

* *



Identifying Causal Drivers of Cardiovascular Disease:
Analysis of Cellular Differentiation in Aortic Aneurysm 

Novel means of tracking single cell differentiation across time. Holds significant commercial application in early 
phase clinical trials and drug efficacy studies. *Note degree of gain in Lgals3 expression in same cell populations 
as in pervious Myh11 slide relative to two distinct experimental perturbation strategies.  

* *



Experimental Validation of ZI-VAE AI 
With Imaging Mass Cytometry  



Quantum 
Machine Learning

FDG & 
AV45FDG & 

AV45

• Quantum computing promises 
enhanced performance for many classes of 
problems associated with large datasets.

• We are in the process of replacing 
algorithmic components of our 
Ensemble Computational Intelligence 
Strategy with their respective quantum 
counterparts.

• Our first algorithm was a quantum hierarchical 
clustering (qHCl), based on a modified 
Grover's algorithm, a quantum 
search algorithm that runs quadratically faster 
than any equivalent classical algorithm.

• We have now built statistical quantum machine learning 
classifiers on both IBM’s universal quantum circuit architecture 
and the D-Wave Two X (DW2X) processor and DW2000Q 
Adiabatic quantum computer. Our D-Wave qML algorithms achieve
comparable, and in some cases slightly better, classification performance 
than their classical counterparts on high-dimensional, multi-omic cancer data 
from the Cancer Genome Atlas (TCGA).   
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Binomial Classification of Tumor Molecular Subtypes 

Luminal A vs. Luminal B Human Breast Cancers

LumA vs. LumB Status

Tumor Samples 311

Luminal A 199

Luminal B 112

Train 250

Test 61

*We have developed a novel solution for the Ising problem and statistical 
optimization. Significant commercial application in early phase clinical trials 
and drug efficacy studies. High-profile research manuscript in preparation.  

250 Patient Samples

45 Patient Samples

DWave
*



*Quantum and classical trees are 88% concordant 

based on the standard Robinson–Foulds metric

*qHCL - Durr-Hoyer method based on a modified Grover’s 

search algorithm with Euclidean distance and Ward linkage

*qHCL ran on a IBM quantum simulator using 19 qubits

LumA vs. LumB Status

Tumor Samples 311

Luminal A 199

Luminal B 112

Train 250

Test 61

Binomial Classification of Tumor Molecular Subtypes: 

Luminal A vs. Luminal B Human Breast Cancers

Natural 
Language 
Processing

Functional Enrichment

*Outer red band: mrna data 

*Outer blue band: methylation data 

*Inner blue band: genes of known function

Quantum machine learning identifies same 
top 100 genes as classical machine learning

Rac GTPase Activating Protein 1
(proposed oncogene) 



Multinomial Classification of Human Cancer Types

Quantum Machine Learning

Human Cancer Types Sample Number

Liver Hepatocellular Carcinoma 358

Breast cancer 1006

Brain Lower Grade Glioma 499

Colon Adenocarcinoma/ 
Rectum Adenocarcinoma

551

Kidney Cancer 611

Lung Cancer 962

Total 3987

Train 3190

Test 797

*We have developed a novel solution for the Ising problem and statistical 
optimization. Significant commercial application in early phase clinical trials 
and drug efficacy studies. High-profile research manuscript in preparation.  

3035 Patient Samples
64 Patient Samples

DWave
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WuxiNextCODE:  A Global Contract Genomics Organization

ICELAND

• Birthplace of population 

genomics

• Database, Clinical 

Interpretation, Sequence 

Analysis development

US

• Global capital of life 

sciences

• World-leading clinical, 

deep learning capabilities

CHINA

• WuXi – the quality leader in 

Life Sciences with pharma

• CLIA, CAP certified 

laboratory in China

29

Natively Global, rapid expansion – 700+ employees, raised $260 million (Oct 2017) 

Nov 2018: GMI Acquisition and $200 million investment

IRELAND

• GMI – now a wholly-owned 

subsidiary of WXNC

• Recruit & Whole genome 

sequence (WGS) 400,000 

of the Irish population
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1. Oncology

2. Cardiovascular Disease

3. Alzheimer’s Disease

4. Liver Disease

5. Inverse Molecular Design

6. Quantum Machine Learning



Lodato et al., Science 2015
Lodato et al., Science 2017



GO Class
Accession
Number nGOSeq Term

List
Hits

List
Size

Pop
Hits

Pop
Size

Fisher's
Exact

Gene
Enrich

%Gene
Enrich

Pvalue
LogDiff

nGOseq
Gene
Enrich

GOseq
Accession GOSeq Term

BP 1900744 regulation of p38MAPK cascade 2 63 4 889 0.027 1.72 42.91 0.65 0.33 0007155 cell adhesion

BP 0060055
angiogenesis involved in
wound healing 3 20 4 199 0.003 2.60 64.95 0.88 0.25 0001666 response to hypoxia

BP 0001935 endothelial cell proliferation 22 1127 72 7178 0.001 10.66 14.86 0.26 0.25 0044237 cellular metabolic process

BP 0043114
regulation of 
vascular permeability 2 85 4 868 0.050 1.61 40.21 0.68 0.54 0006629 lipid metabolic process

BP 0010573
vascular endothelial growth factor 
production 3 41 6 488 0.013 2.50 41.60 0.70 0.43 0033993 response to lipid

BP 0071604
transforming growth factor 
beta production 3 37 8 441 0.022 2.33 29.11 0.21 0.06 2000145

regulation of 
cell motility

BP 0006006 glucose metabolic process
19 576 73 3432 0.028 6.75 9.244 0.64 1.53 0044767

single-organism 
developmental process

Chittenden et al., Bioinformatics 2012
Fang et al., Nature Communications 2017
Yu et al., Nature 2017



A. Clinical Ontology C. Genomic OntologyB. Phenotype Ontology

a priori Biomedical Knowledge-based Feature selection for deepCODE deep learning models



ER- vs. ER+ Breast Tumor Classification with 0.95 accuracy 

2 Mutated Pathways (10 genes); 5 Aberrant Expression Pathways (146 genes) 

Luminal A vs. B Breast Tumor Classification with 0.94 accuracy

4 Mutated Pathways (172 genes); 8 Aberrant Expression Pathways (72 genes) 

825 Sample TCGA Breast Cancer Dataset 129 Sample TCGA Breast Cancer Dataset

Ciriello et al., Cell 2015

Modeling Human Breast Cancer – High Generalizability 
Molecular Subtypes using Somatic Tumor Variants (STVs) and mRNA 

Novel deepCODE pathway-based integration approach classifies tumor subtypes and tumor vs. normal at high accuracy
This classification reveals key mutated and expressed genes/pathways. 



Cross-Platform Analysis: RNA-seq to DNA Microarray – High Generalizability 

TCGA Network, Nature, 2012 TCGA Network, Nature, 2012

a. ER- vs. ER+ Classification with AUC = 0.95
5 Aberrant Expression Pathways (146 genes) 

b. Luminal A vs. B Classification with AUC = 0.94 
8 Aberrant Expression Pathways (72 genes) 

c. LUAD vs. LUSC Classification with AUC = 0.98
9 Aberrant Expression Pathways (60 genes) 

Gyorffy et al., PLoS ONE, 2013



DeepCODE Deep Learning vs. LASSO Machine Learning 

Multinomial Regression Models on 28 TCGA cancer types

Multinomial Human Cancer Classification:

Trained: 7,618 RNA-seq samples; Tested:1,889  RNA-seq samples

True Positive Probability 

Distributions per Cancer type

Note: deepCODE Model Calls 

True Positives with far greater 

confidence 

Our deep learning approach to classification of TCGA tumor Types 

is far superior to traditional machine learning methods (LASSO)



Multinomial Human Cancer Classification:

Trained: 7,618 RNA-seq samples; Tested:1,889  RNA-seq samples

Total True Positive Probability Counts for Test Data Across All 28 Cancer Types

Note: deepCODE Model Calls True Positives with far greater confidence 

Our deep learning approach to classification of TCGA tumor Types is far 

superior to traditional machine learning methods (LASSO)

DeepCODE Deep Learning vs. LASSO Machine Learning Multinomial Regression Models on 28 TCGA cancer 

types



nGOseq MEGENA

Bayesian 
Belief
Networks

Natural 
Language 
Processing

*
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Blue = DNA Methylation

Red = mRNA

Orange = miRNA

Green = CNV

Pink = STV 

Purple Band = Degree NLP Network Connectivity

Black Band = Degree BNN Node Connectivity

Blue Band = Function Annotation

Red = BNN Driver Gene

Bold + Italic = Known Drug Target

*Driver Gene & Known Drug Target

#Driver Gene of Unknown Function

nGOseq
DNA Methylation = 11
mRNA = 1
miRNA = 1
STV = 1

MEGENA
DNA Methylation = 6
mRNA = 4



Multinomial Classification of 22 TCGA Cancer Types with Greater than 99.6% Accuracy 

*
* * *

*
*



Multinomial Classification of 22 TGCA Cancer Types with Greater than 99.6% Accuracy 

Purple Band = Degree NLP Network Connectivity
Blue Band = Function Annotation
Bold + Italic = Known Drug Target (12 DNA Methylation; 4 mRNA)

Natural 
Language 
Processing



Binomial Classification of Tumor Molecular Subtypes 

Quantum Machine Learning

DWave
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Balanced Accuracy Luminal A vs. Luminal B



Multinomial Classification of Human Cancer Types

Quantum Machine Learning

Human Cancer Types Sample Number

Liver Hepatocellular Carcinoma 358

Breast cancer 1006

Brain Lower Grade Glioma 499

Colon Adenocarcinoma/ 
Rectum Adenocarcinoma

551

Kidney Cancer 611

Lung Cancer 962

Total 3987

Train 3190

Test 797



October 2016

Identifying Causal Drivers 
of Cardiovascular Disease:

Aortic Aneurysm 

CyTOF (Cytometry by Time of Flight)

Vs.

Zero Inflated Variational Autoencoder

(VAE) of Single Cell RNA-seq Data

Cluster 18



Image Data
PET Scans (AV45 + FDG)

Molecular Signature
Integrated Datatypes: Methylation , Expression, Variant Data

Count

Samples 152

Alzheimer 36 (29/7)

Controls 116 (93/23)

Count

Samples 326

Alzheimer 144

Controls 182

LASSO (Test set)

MEGENA nGOSeq MEGENA nGOSeq

MetaGene MetaGene Gene Gene

AUC 0.87 0.94 0.98 1

Accuracy 0.83 0.93 0.97 0.93

DCNN (Test set)

AUC 0.99

Accuracy 0.94

Deep Learning, Machine Learning and Alzheimer Disease (ADNI)

Non-zero Genes
Methylation: 31
Expression: 17
STV: 7

Non-zero Genes
Methylation: 29
Expression: 5
STV: 10



Deep Learning, Machine Learning and Alzheimer Disease (ADNI)

FDG & 

AV45FDG & 

AV45

MEGENA Feature Selection

Methylation 

Genes

Expression 

Genes

Variant 

Genes

AUC 0.99 0.75 0.75

Accuracy 0.93 0.73 0.73

AD Test Acc 0.86 0.64 0.64

nGOSeq Feature Selection

Methylation 

Genes

Expression 

Genes

Variant 

Genes

AUC 0.98 0.81 0.75

Accuracy 0.93 0.73 0.73

AD Test Acc 0.71 0.64 0.58

Methylation 

Genes

Expression 

Genes

Variant 

Genes

AUC 0.93 0.77 0.80

Accuracy 0.90 0.76 0.77

AD Test Acc 0.57 0.54 0.54

Molecular Signature
Single Datatypes: Methylation , Expression, Variant Data

Count

Samples 152

Alzheimer 36 (29/7)

Controls 116 (93/23)

No Feature 
Selection



Bayesian 
Belief
Networks

Natural 
Language 
Processing

Blue = DNA Methylation

Red = mRNA

Pink = STV 

#

#

*

*
*

*
*
*
*
*

*

*
*

*

*

*
*

*

**

*

*

*

*
**

*

*

*

*

*Implicated in Phenotypes

#
Same Gene

nGOseq MEGENA

Av. Degree = 12.00 Av. Degree = 4.58



Deep Learning, Machine Learning and Alzheimer Disease (RosMap)

RNA extracted from dorsolateral prefrontal cortex of 724 subjects

Sample set:

AD: 222 [Train: 178, Test: 44]

CN: 201 [Train: 161, Test: 40]

Pathway Level Analysis:

Number of Pathways: 3340

Test Accuracy: 72.61

Test AUC: 79.26

Number of Non-Zero Pathways: 76

Gene Level Analysis:

Number of Genes: 342 Genes from 76 Non-zero Pathways

Test Accuracy: 72.61

Test AUC: 80.51

Number of Non-Zero Genes: 45



Deep Learning for Chemical Reactions

Modeling Chemical Data
DL models based on different representations of molecules:

Retrosynthesis
Learning how molecules are produced using chemical reaction 

datasets (~1.1 M chemical reactions from U.S. patents)

Count

Product molecules 431485

Chemical reactions for 
classification 

462

Multinomial classification with Highway
networks (20% - Test set)

Accuracy 0.79 (0.12)*

Taking stereochemistry into account
Learning about molecular 3D shape for chemical reaction prediction

Binomial classification based on chirality
(20% - Test set)

Accuracy 0.89

Count

Molecules with single 
chiral center 

2762

Atoms can be arranged differently for same molecule:

S RTwo configurations:

G = (E,N)

Graph

CC(C)CC1=CC=C(C=C1)C(C)C(=O)O

SMILES

Fingerprint 0110101 … 0111010

2048 bits

Molecule

Feature learning DL Model

Highway networks

Sequence-to-sequence
(seq2seq)

Graph Convolutional 
Networks (GCN)

Multinomial classification with Multiscale 
approach (20% - Test set)

Accuracy 0.90 (0.08)*

*s.d. in parentheses



FDG & 

AV45FDG & 

AV45

Classical HCL quantum HCL
Estrogen Receptor Status

Tumor Samples 959

ER Negative 740

ER Positive 219

Train 768

Test 191

Performance

Algorithm HCL qHCL

Clustering (genes) 64 64

Clustering (sec)* 0.02 10078.30 (2h 48m)

Cluster Number 8 9

LASSO Classification Accuracy 0.9215 0.9267

LASSO ROC AUC 0.945 0.944

DANN Classification Accuracy 0.9267 0.9267

DANN ROC AUC 0.943 0.944

*Quantum and classical trees are 88% concordant based on the 

standard Robinson–Foulds metric

*qHCL - Durr-Hoyer method based on a modified Grover’s search 

algorithm with Euclidean distance and Ward linkage

*qHCL ran on a IBM quantum simulator using 19 qubits

Modeling Human Breast Cancers

Quantum Machine Learning



WUXI NEXTCODE ANALYSIS PLATFORM 
Clinical interpretation and research in one, scalable platform built for the genome from the 

ground up 

GOR (Genomically Ordered Relational) Database Infrastructure 

– For efficient storage and queries for whole genome and whole exome data 

using the tools listed below

Clinical Sequence Analyzer (CSA)
– Clinical geneticist-friendly tools for germline analysis of large or small families

– Automatic gene carrier analysis for confirmation

– Generate candidate genes from a standard list or with phenotype tools 

and stratify by variant annotations

Sequence Miner (SM)
– Advanced tool for case-control disease gene discovery or responder non-

responder companion diagnostic discovery

– Additional algorithms for covariate adjustment and pathway enrichment

– Perform phenotype scans and carrier analysis

Tumor Mutation Analyzer (TMA)
– Somatic variant analysis for defining tumor-specific variations and oncology 

annotations including actionable databases


