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WuXi NextCODE Global Predictive Analytics Initiative

deepCODE Deep Learning and Probabilistic Programming — Faster, cost-effective drug development

Adding value to drug discovery pipelines

— Drug target discovery and drug repurposing with novel ensemble computational intelligence
strategies with integrated data platforms to identify ‘causal’ driver genes and molecular signal
transduction networks

— Proof of concept for causal statistical learning approaches.
— Focus of Today’s Talk.
— Discover accurate integrated ‘omics’ profile that defines responders and non-responders for a
drug in development
— Pharma partners can use our profile to decrease cost and time of phase Il or phase lll trials.
— WXNC can provide sequencing/ GOR database/ analysis/ deep learning.

— Note approach may work on small sample sizes - deep learning is powerful enough to
potentially find drug response profiles even in phase I clinical trials with only 40 to 60
patients on drug.

Discover accurate integrated ‘omics’ profile that defines responders and non-responders for an
approved expensive drug that is being underutilized
— Pharma can use our profile to justify use and reimbursement for their drug.

— A drug response profile could salvage the marketing of their drug.
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Al & Deep Learning

Facial Recognition & DeepCODE Feature Selection Analogy

(Facebook Al team’s Facial Recognition Algorithm boasts 97.25% Accuracy)

Facial Recognition
Thousands of people

Tens of Features




Samples

Our deepCODE dimensionality reduction methods enhance
algorithm stability and allow us to handle tens of thousands
of features without overfitting
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O A.l. and Precision Medicine

The computational power of modern A.l. technology is well-positioned to uncover new and
actionable insights from the exponentially growing pool of biological data.

FEATURE LEARNING

The intelligent simplification of high-dimensional
multi-omic data without loss of information

MACHINE & DEEP LEARNING

Intelligent algorithms capable of self-optimization to achieve
incredible accuracy with complex, layered data

CAUSAL INFERENCE

Specialized statistical learning models capable of elucidating
casual dependencies within biological data

NATURAL LANGUAGE PROCESSING

Intelligent scanning of sentence syntax to understand and
validate findings in context, at scale

The combination of several A.l. methods create a proprietary ensemble A.l. strategy capable of revealing novel

patterns and causal dependencies in disparate and varied biological data.
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Enhanced Feature Reproducibility
for Causal Statistical Learning
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Multinomial Classification of 22 TCGA Cancer Types
with Greater than 99.7% Accuracy = Disease Recognition
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Large-scale clinical outcome study:
* TCGA Pan-Cancer Time-dependent Survival Analysis

Prediction of overall survival across 20 different cancers types with 75% accuracy
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“ 79k Molecular Features + 1 Clinical variable: Age
“ 6,122 Training Samples

“ 1,853 Testing Samples

= 20 Cancer Types

Interpretation: Compensating for overall survival instead of disease specific survival

Estimator of cumulative/dynamic AUC for right-censored time-to-event data: Uno et a/. Journal of the American Statistical Association, 2007



' 0 Large-scale clinical outcome study: TCGA Pan-Cancer Survival Analysis

Risk Stratification across 20 TCGA Cancers Types

Metagene Level Gene Level
BLCA CESC CRAD BRCA LGG LIHC
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Blue = DNA Methylation Bayesian
Red = mRNA .
Orange = miRNA Bel IEf
Green = CNV
Pink = STV Networks
Purple Band = Degree NLP Network Connectivity
Black Band = Degree BNN Node Connectivity
Blue Band = Function Annotation
Red = BNN Driver Gene
Bold + Italic = Known Drug Target
*Driver Gene & Known Drug Target
#Driver Gene of Unknown Function
m : T Natural
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nGOseq MEGENA
DNA Methylation = 8 DNA Methylation = 3
mMRNA = 14 mMRNA = 7
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CDK4 KO confirmation by WB:

*Approved CDK4/6 inhibitors for
metastatic ER-positive/HER2-negative
breast cancer: Kisgali (Norvartis),
Verzenio (Lilly), and Ibrance (Pfizer).
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0 Phenotype Projection: Identifying Causal Drivers of Cardiovascular Disease
(Hypertension, Vascular Hemorrhage, and Renal Failure)

(Ricard et al., JEM 2019)

Research Collaboration with Yale Cardiovascular Research Center
Deep Learning, BBN Analysis, and NLP of Single Cell RNA-seq Data




Phenotype Projection: Identifying Causal Drivers of Cardiovascular Disease
| (Hypertension, Vascular Hemorrhage, and Renal Failure)

(Ricard et al., JEM 2019)
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Research Collaboration with Yale Cardiovascular Research Center
Deep Learning, BBN Analysis, and NLP of Single Cell RNA-seq Data



Identifying Causal Drivers of Cardiovascular Disease:
o Aortic Aneurysm and Atherosclerosis

(Chen et al., Nature Metabolism 2019, Li et al., JCI In press)
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| 0 Identifying Causal Drivers of Cardiovascular Disease:
Analysis of Cellular Differentiation in Aortic Aneurysm
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Identifying Causal Drivers of Cardiovascular Disease:
Analysis of Cellular Differentiation in Aortic Aneurysm

ApoE Differentiation Graph DKO Differentiation Graph
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Novel means of tracking single cell differentiation across time. Holds significant commercial
application in early phase clinical trials and drug efficacy studies.




Identifying Causal Drivers of Cardiovascular Disease:
Analysis of Cellular Differentiation in Aortic Aneurysm

Differentiation Graph: Myh11
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Novel means of tracking single cell differentiation across time. Holds significant commercial application in early
phase clinical trials and drug efficacy studies. *Note degree of loss of Myh11 expression in distinct cell

populations relative to two different experimental perturbation strategies.



Identifying Causal Drivers of Cardiovascular Disease:
Analysis of Cellular Differentiation in Aortic Aneurysm

Differentiation Graph: Lgals3

1227«

T

o4

To
19

nw

THe

ApoE

=

U

1226
N

TR

TO.

Ty

™

Macrophage Markers

TS

0 T4

® o ™3

T01

Tos
. 400 ™

e ro0

DKO
J 3220 *
| /ua(.
®
@/ }.iw
\ .
a3

“raae

v |
1228 1222

Novel means of tracking single cell differentiation across time. Holds significant commercial application in early

phase clinical trials and drug efficacy studies. *Note degree of gain in Lgals3 expression in same cell populations
as in pervious Myh11 slide relative to two distinct experimental perturbation strategies.



Experimental Validation of ZI-VAE Al
With Imaging Mass Cytometry
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Quantum

Machine Learning

Quantum computing promises
enhanced performance for many classes of
problems associated with large datasets.

We are in the process of replacing
algorithmic components of our
Ensemble Computational Intelligence
Strategy with their respective quantum
counterparts.

( (i) Data Pre-Processing & Normalization +——~___(il) Featurs Learning & Dimensionality Reduction 4 WWMM&MWL

“2

Our first algorithm was a quantum hierarchical
clustering (qHCl), based on a modified

Grover's algorithm, a quantum :
search algorithm that runs quadratically faster S nenn R . Y
than any equivalent classical algorithm. : -

We have now built statistical quantum machine learning
classifiers on both IBM’s universal quantum circuit architecture
and the D-Wave Two X (DW2X) processor and DW2000Q

[ {vi) Intermediate and Final Model Evaluation |

. . . . AUC ()
Adiabatic quantum computer. Our D-Wave gML algorithms achieve po g} L;:mﬂ‘ P i s

comparable, and in some cases slightly better, classification performance
than their classical counterparts on high-dimensional, multi-omic cancer data
from the Cancer Genome Atlas (TCGA).
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@ Binomial Classification of Tumor Molecular Subtypes
Luminal A vs. Luminal B Human Breast Cancers
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*We have developed a novel solution for the Ising problem and statistical
optimization. Significant commercial application in early phase clinical trials
and drug efficacy studies. High-profile research manuscript in preparation.




Binomial Classification of Tumor Molecular Subtypes:
Luminal A vs. Luminal B Human Breast Cancers

B b
§ g | Classical HCI
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LumA vs. LumB Status

Tumor Samples 311
- =Y} | Luminal A 199
‘ QE Luminal B 112
! 'Lt Train 250
lpg—’h B Test 61

z.".a= X

*Quantum and classical trees are 88% concordant
based on the standard Robinson—Foulds metric

*qHCL - Durr-Hoyer method based on a modified Grover’s
search algorithm with Euclidean distance and Ward linkage

nGO term GO term K *gqHCL ran on a IBM quantum simulator using 19 qubits
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Quantum Machine Learning

1.000

0.9751

0.9501

Balanced Accuracy

o
(o]
n
o

DWave —

0.900+ I

.f’.

Algorithm
D-Wave
- Fleld
LASSO
- NB
Random
- RF
Ridge
- SA

sSVvM
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0.50
Fraction of Training Data
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| 100
3035 Patient Samples

Multinomial Classification of Human Cancer Types

Human Cancer Types Sample Number

Liver Hepatocellular Carcinoma 358

Breast cancer 1006
Brain Lower Grade Glioma 499

Colon Adenocarcinoma/

Rectum Adenocarcinoma >51

Kidney Cancer 611

Lung Cancer 962

Total 3987
Train 3190
Test 797

*We have developed a novel solution for the Ising problem and statistical
optimization. Significant commercial application in early phase clinical trials
and drug efficacy studies. High-profile research manuscript in preparation.



Advanced Artificial Intelligence Research Laboratory

Academic and Industry Research Collaborations

Harvard Medical School University of Toronto
Professor Chris Walsh Professor Alan Aspuru-Guzik
Chief of Genetics and Genomics Quantum Chemistry and Chemical Biology

University of Oxford WuXi AppTec Oncology
Professor Chris Holmes Fabrice Alphonse

Computational Statistics and Machine Learning

Yale University School of Medicine
Professor Michael Simons
Director of Yale Cardiovascular Research Center

University of Southern California
Professor Daniel Lidar
Quantum Computing and Quantum Machine Learning

Professor Karen Hirschi
Yale Cardiovascular Research Center
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0 WuxiNextCODE: A Global Contract Genomics Organization

Natively Global, rapid expansion — 700+ employees, raised $260 million (Oct 2017)
Nov 2018: GMI Acquisition and $200 million investment

VDL N, ™ OIS Toge -

ICELAND CHINA IRELAND

Birthplace of population Global capital of life WuXi — the quality leader in ® GMI — now a wholly-owned
genomics sciences Life Sciences with pharma subsidiary of WXNC
Database, Clinical World-leading clinical, CLIA, CAP certified Recruit & Whole genome
Interpretation, Sequence deep learning capabilities laboratory in China sequence (WGS) 400,000
Analysis development of the Irish population
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NEURODEVELOPMENT

Somatic mutation in single human
neurons tracks developmental
and transcriptional history

Michael A. Lodato,'* Mollie B. Woodworth,'* Semin Lee,** Gilad D. Evrony,’
Bhaven K. Mehta," Amir Karger,” Soohyun Lee,” Thomas W. Chittenden,**f
Alissa M. D’Gama,’ Xuyu Cai,'t Lovelace J. Luquette,> Eunjung Lee,>”

Peter J. Park,””§ Christopher A. Walsh'§

~ . GO:0030030:
cell projection organization

G0O:0030554:
adenyl nucleotide binding

GO:0043167:

ion binding
G0:0048666:
neuron development

~ GO:0031175:
neuron projection development

GO:0007399:
nervous system development

~ G0:0048812:
neuron projection morphogenesis

GO:0007411:
axon guidance

10 10 100 10" 10 10 10 10 10 1010 10
Benjamini-Hochberg-corrected p-value

WuXiNextCODE




LETTER

doi:10.1038/nature22322

FGF-dependent metabolic control of vascular
development

Pengchun Yu!, Kerstin Wilhelm?*, Alexandre Dubrac'®, Joe K. Tung'*, Tiago C. Alves®, lennifer S. Fang!, Yi Xie!, Jie Zhu*,
Zehua Chen®, Frederik De Smet®”, Jiasheng Zhang!, Suk -Won Jin®, Lele Sun?, Hongye Sun®, Richard G. Kibbey?,
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nGOseq
Accession List List Pop Pop Fisher's Gene %Gene Pvalue Gene GOseq
GO Class Number nGOSeq Term Hits Size Hits Size Exact Enrich Enrich LogDiff Enrich Accession GOSeq Term
BP 1900744  regulation of p38MAPK cascade 2 63 4 889 0.027 1.72 4291 0.65 0.33 0007155  cell adhesion
angiogenesis involved in
BP 0060055  wound healing 3 20 4 199 0.003 2.60 64.95 0.88 0.25 0001666  response to hypoxia
BP 0001935  endothelial cell proliferation 22 1127 72 7178 0.001 10.66 14.86 0.26 0.25 0044237  cellular metabolic process
regulation of
BP 0043114  vascular permeability 2 85 4 868 0.050 1.61 40.21 0.68 0.54 0006629  lipid metabolic process
vascular endothelial growth factor
BP 0010573  production 3 41 6 488 0.013 2.50 41.60 0.70 0.43 0033993  response to lipid
transforming growth factor regulation of
BP 0071604 beta production 3 37 8 441 0.022 2.33 29.11 0.21 0.06 2000145 cell motility
single-organism
19 576 73 3432 0.028 6.75 9.244 0.64 1.53 0044767  developmental process

BP 0006006  glucose metabolic process

Chittenden et al., Bioinformatics 2012
Fang et al., Nature Communications 2017

Yu et al., Nature 2017 WuXiNextC ODE




a priori Biomedical Knowledge-based Feature selection for deepCODE deep learning models

A. Clinical Ontology B. Phenotype Ontology C. Genomic Ontology

Parent Parent Parent
ncreasing ls_a - Is a increasing nereasing
Specificity or - Specificity or Spaciicity
Grunularity Granularity
Neiifsdigansmiion Abnarmal Neuron Abnoemal Cerebellum
Maorphstogy Morphology
39720008
Sustalned diastobe v
nsion {disorder Child
SNOMED CT Clinical Ontology - Directed Acyclic Graph (DAG) Human Phenotype Ontology - Directed Acyclic Graph (DAG) Gene Ontology - Directed Acyclic Graph (DAG)
% Terms may have multiple parents on the tree. » Terms may have multiple parents on the tree. » Termsmay have multiple parents on the tree.
» All attributes of a selected term must hold true for all its » All attributes of a selected term must hold true for all its »  All attributes of a selected term must hold true for all its
parents. parents. parents.
» Governed by “is_a” relationships. » Governed by “is_a" relationships. » Governed by “is_a" and “part-of” relationships.



Modeling Human Breast Cancer — High Generalizability

Molecular Subtypes using Somatic Tumor Variants (STVs) and mRNA

Novel deepCODE pathway-based integration approach classifies tumor subtypes and tumor vs. normal at high accuracy
This classification reveals key mutated and expressed genes/pathways.
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ER- vs. ER+ Breast Tumor Classification with 0.95 accuracy
2 Mutated Pathways (10 genes); 5 Aberrant Expression Pathways (146 genes)

Luminal A vs. B Breast Tumor Classification with 0.94 accuracy
4 Mutated Pathways (172 genes); 8 Aberrant Expression Pathways (72 genes)
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Cross-Platform Analysis: RNA-seq to DNA Microarray - High Generalizability
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Our deep learning approach to classification of TCGA tumor Types
Is far superior to traditional machine learning methods (LASSO)

DeepCODE Deep Learning vs. LASSO Machine Learning
Multinomial Regression Models on 28 TCGA cancer types
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Multinomial Human Cancer Classification: ]
Trained: 7,618 RNA-seq samples; Tested:1,889 RNA-seq samples WuXiNextCODE




Our deep learning approach to classification of TCGA tumor Types is far
superior to traditional machine learning methods (LASSO)

DeepCODE Deep Learning vs. LASSO Machine Learning Multinomial Regression Models on 28 TCGA cancer
types
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Total True Positive Probability Counts for Test Data Across All 28 Cancer Types
Note: deepCODE Model Calls True Positives with far greater confidence

Multinomial Human Cancer Classification:
Trained: 7,618 RNA-seq samples; Tested:1,889 RNA-seq samples
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I Multinomial Classification of 22 TCGA Cancer Types with Greater than 99.6% Accuracy

a

c

. MEGENA Module Level

| MEGENA Gene Level |

09003 09865 00793 00757

09080 05708 09605 00486

0.9099 09079 0.8957 0.0962 0.8099 09075 0.8045 0.0044

1.000

*

DANM (MEGENA)

DBMNN (MEGEMA)Y

DANN (MEGENA Gene Levell DBNN (MEGEMA Gene Level)

Metrics [ Muti-Class AUC  [[] Averags Balanced Accuracy [JJ] Averags Accuracy [l Averags F1-Scors

o

c1_30_Block_14
c1_34_ Block_29
c1_13_Block_22
c1_23 Block_14
c1_22 Block_14
c1_9_Block_21
c1_28 Block_21
c1_17_Block_11
ci_4 Block_4
c1_11_Block_4
c1_15_Block_4
c1_11_Block_24
c1_17_Block_28

Top MEGENA Modules

Module Importance

0.0

nGO Term

GO Term

cellular response to vascular _
endothelial growth factor stimulus
regulation of JAK-STAT cascade [
insulin receptor signaling pathway _
G2/M transition of mitotic cell _
cycle
ymonocyte acivaton [
signal transduction in response to|
DNA damage
|-kappaB kinase/MF-kappaB _
signaling
regulation of G1/3 transition of _

mitotic cell cycle
B cell differentiation

phosphatidylinositol 3—kinase
binding
response to fioroblast growth _
factor
Ras protein signal transduction _

G—protein coupled receptor
signaling pathway
EREB =ignaling pathway| _

blood vessel development _
regulation of telomere maintenance _
cet mgrason [N
infrinsic apoptotic signaling _

pathway by p53 class mediator

angogenesis [N

TOR signaling -

DMA damage response, signal
transduction by p33 class mediator -

ERK1 and ERK2 cascade [N
regulation of vasculature

development -

JAK-STAT cascade [N

cAMP-mediated signaling [N

regulation of epidermal growth
factor receptor signaling pathway |

mitatic cell cycle checkpoint [
——

fibroblast growth factor receptor
signaling pathway -

Motch signaling pathway -

tumor necrosis factor preduction -

Wit signaling pathway -

establishment of
protein localization

cell part morphogenesis
positive regulation of
protein kinase activity
cellular localization

cellular response to
DMNA damage stimulus

regulation of cellular
protein metabolic process

circulatory system
development
cell differentiation

cell development
ion binding
cell differentiation

cell differentiation
regulation of hormone
levels

circulatory system
development

primary metabolic process
regulation of cellular
protein metabolic process
positive regulation of
molecular function

cell development

primary metabolic process
regulation of primary
metabolic process

regulation of cellular
protein metabolic process

regulation of nitrogen
compound metabolic process
regulation of primary
metabolic process
single—organism

cellular process

cellular macromolecule
metabolic process
peptidyl-amino acid
modification

cell death

ion binding

cell differentiation

positive regulation of
muliicellular organismal process
negative regulation of
cellular metabolic process
intracellular signal

transduction

0 1 2 3
-og,,(p-value)

4

WuXiNextCODE




Multinomial Classification of 22 TGCA Cancer Types with Greater than 99.6% Accuracy
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Binomial Classification of Tumor Molecular Subtypes
Quantum Machine Learning
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Multinomial Classification of Human Cancer Types
Quantum Machine Learning

1.01
I— - Human Cancer Types Sample Number
Liver Hepatocellular Carcinoma 358
Breast cancer 1006
i . Brain Lower Grade Glioma 499
(h 0.9 - Metric
— Accuracy Colon Adenocarcm?ma/ 551
g Rectum Adenocarcinoma
= — AUC
g .
— Bal. Accuracy Kidney Cancer 611
— F1score Lung Cancer 962
0.8 Total 3987
Train 3190
Test 797

LASSO SVM RF Ridge NB D-Wave SA Random Field
Algorithm
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Deep Learning, Machine Learning and Alzheimer Disease (ADNI)

Image Data
PET Scans (AV45 + FDG)
Molecular Signature
283 Conv Layws 2030 Cow Layers 2800 Conv Layer  Derae Layers Integrated Datatypes: Methylation , Expression, Variant Data
Output Layer
I YT LASSO (Test set
AVAS
Samples MEGENA nGOSeq MEGENA nGOSeq
Alzhei 29/7
?::::,:z zheimer 36 (29/7) MetaGene MetaGene Gene Gene
ot T 3D Convolution Network Controls 116 (93/23)
AUC 0.87 0.94 0.98 1
Accuracy 0.83 0.93 0.97 0.93
- DCNN (Test set) Megene=0ene Lavel Non-zero Genes nE0SAY ~Bene Level Non-zero Genes
1.00- ° 7 Methylation: 31 1.00- 8 (] Methylation: 29
Samples 326 0.99 é o 3 : labels  Expression: 17 é 0.75- ! labels  Expression: 5
. 5 . © AD STV:7 B s o ¢ AD  STV:10
Alzheimer 144 Accuracy 0.94 3 o0 - E 0.50 ] "
Controls 182 e . . s o ‘
Cf)ntrol S AI;J Cf)ntrol Vs AlL))
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I Deep Learning, Machine Learning and Alzheimer Disease (ADNI)

Molecular Signature
Single Datatypes: Methylation , Expression, Variant Data

Methylation Expression Variant
Count Genes Genes Genes
152 AUC 0.93 0.77 0.80

Samples No Feature
Alzheimer 36 (29/7) Accuracy 0.90 0.76 0.77 Selection
Controls 116 (93/23) AD Test Acc 0.57 0.54 0.54

- MEGENA Feature Selection _ NnGOSeq Feature Selection

Methylation Expression Variant
Genes Genes Genes

Methylation Expression Variant
Genes Genes Genes

AUC 0.99 0.75 0.75 AUC 0.98 0.81 0.75
Accuracy 0.93 0.73 0.73 Accuracy 0.93 0.73 0.73
AD Test Acc 0.86 0.64 0.64 AD Test Acc 0.71 0.64 0.58
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Deep Learning, Machine Learning and Alzheimer Disease (RosMap)

Pathway-Gene Level Lasso ROC Curves
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RNA extracted from dorsolateral prefrontal cortex of 724 subjects

Sample set:
AD: 222 [Train: 178, Test: 44]
CN: 201 [Train: 161, Test: 40]

Pathway Level Analysis:

Number of Pathways: 3340

Test Accuracy: 72.61

Test AUC: 79.26

Number of Non-Zero Pathways: 76

Gene Level Analysis:

Number of Genes: 342 Genes from 76 Non-zero Pathways

Test Accuracy: 72.61
Test AUC: 80.51
Number of Non-Zero Genes: 45
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I Deep Learning for Chemical Reactions

Modeling Chemical Data Retrosynthesis
DL models based on different representations of molecules: Learning how molecules are produced using chemical reaction
datasets (~1.1 M chemical reactions from U.S. patents)
Feature learning DL Model
Multinomial classification with Highway
networks (20% - Test set
Graph Graph Convolutional | cout e
Molecule G=(EN) Networks (GCN) Product molecules 431485 Accuracy 0.79 (0.12)*
i s wid Chemical reactions for 462
l | SMILES . : Sequence-tzo-sequence classification Multinomial classification with Multiscale
C€C(C)CC1=CC=C(C=C1)C(C)C(=0)O (seq2seq) approach (20% - Test set)
o Fingerprint 0110101 ... 0111010 Highway networks Accuracy 0.90 (0.08)*
l ]
|
*s.d. in parentheses
2048 bits

Taking stereochemistry into account
Learning about molecular 3D shape for chemical reaction prediction

Atoms can be arranged differently for same molecule:
_ Binomial classification based on chirality
: (20% - Test set)

Molecules with single 2762
chiral center Accuracy 0.89

Two configurations:
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Modeling Human Breast Cancers
Quantum Machine Learning

Classical HCL quantum HCL

Tumor Samples 959 l '_ﬂ
ER Negative 740 _ A1k et s A ;]1_7 rL1 LehsT)

= = - » 3
ER Positive 219 . = -5 ! = l2
Bt o=
Train 768 o A 0
Test 191 S . 4 &
< - = - -;‘_.- = l'2
= =2
| vefomance [y -
Algorithm HCL gHCL s 5 :
Clustering (genes) 64 64 BEolr: :*
= =
Clustering (sec)* 0.02 10078.30 (2h 48m) = = =i
- _.’ >
Cluster Number 8 9 L Rl
LASSO Classification Accuracy 0.9215 0.9267 - T RS T TS
- e e TS s
i | =
LASSO ROC AUC 0.945 0.944 ==
DANN Classification Accuracy 0.9267 0.9267
DANN ROC AUC 0.943 0.944

*Quantum and classical trees are 88% concordant based on the
standard Robinson—Foulds metric

*qHCL - Durr-Hoyer method based on a modified Grover’s search
algorithm with Euclidean distance and Ward linkage

*qHCL ran on a IBM quantum simulator using 19 qubits WUXlNextC ODE



O WUXI NEXTCODE ANALYSIS PLATFORM

Clinical interpretation and research in one, scalable platform built for the genome from the
ground up w—

GOR (Genomically Ordered Relational) Database Infrastructure el

For efficient storage and queries for whole genome and whole exome data S e o
using the tools listed below

Clinical Sequence Analyzer (CSA)
Clinical geneticist-friendly tools for germline analysis of large or small families
Automatic gene carrier analysis for confirmation

Generate candidate genes from a standard list or with phenotype tools
and stratify by variant annotations

Sequence Miner (SM)

Advanced tool for case-control disease gene discovery or responder non- =
responder companion diagnostic discovery —

Additional algorithms for covariate adjustment and pathway enrichment
Perform phenotype scans and carrier analysis

_———— . ————

Tumor Mutation Analyzer (TMA) = e — =
. . . . . . . . _— —i
Somatic variant analysis for defining tumor-specific variations and oncology

annotations including actionable databases %E




