Unconventional Machine Learning of Genome-Wide Human Cancer Data

Tom Chittenden, PhD, DPhil, PStat Chief AI Scientist Founding Director, Advanced AI Research Laboratory Lecturer on Pediatrics, Harvard Medical School

WuXi NextCODE Global Predictive Analytics Initiative

deepCODE Deep Learning and Probabilistic Programming – Faster, cost-effective drug development

Adding value to drug discovery pipelines

- Drug target discovery and drug repurposing with novel ensemble computational intelligence strategies with integrated data platforms to identify 'causal' driver genes and molecular signal transduction networks
 - Proof of concept for causal statistical learning approaches.
 - Focus of Today's Talk.
- Discover accurate integrated 'omics' profile that defines responders and non-responders for a drug in development
 - Pharma partners can use our profile to decrease cost and time of phase II or phase III trials.
 - WXNC can provide sequencing/ GOR database/ analysis/ deep learning.
 - Note approach may work on small sample sizes deep learning is powerful enough to potentially find drug response profiles even in phase I clinical trials with only 40 to 60 patients on drug.
- Discover accurate integrated 'omics' profile that defines responders and non-responders for an approved expensive drug that is being underutilized
 - Pharma can use our profile to justify use and reimbursement for their drug.
 - A drug response profile could salvage the marketing of their drug.

Al & Deep Learning

Facial Recognition & DeepCODE Feature Selection Analogy

(Facebook AI team's Facial Recognition Algorithm boasts 97.25% Accuracy)

16

Tens of Features

Our deepCODE dimensionality reduction methods enhance algorithm stability and allow us to handle tens of thousands of features without overfitting

Features

WuXiNextCODE

O A.I. and Precision Medicine

The computational power of modern A.I. technology is well-positioned to uncover new and actionable insights from the exponentially growing pool of biological data.

FEATURE LEARNING

The intelligent simplification of high-dimensional multi-omic data without loss of information

MACHINE & DEEP LEARNING

Intelligent algorithms capable of self-optimization to achieve incredible accuracy with complex, layered data

CAUSAL INFERENCE

Specialized statistical learning models capable of elucidating casual dependencies within biological data

NATURAL LANGUAGE PROCESSING

Intelligent scanning of sentence syntax to understand and validate findings in context, at scale

The combination of several A.I. methods create a proprietary ensemble A.I. strategy capable of revealing novel patterns and causal dependencies in disparate and varied biological data.

Enhanced Feature Reproducibility for Causal Statistical Learning

Large-scale clinical outcome study: TCGA Pan-Cancer Time-dependent Survival Analysis

Prediction of overall survival across 20 different cancers types with 75% accuracy

Data Matrix

- 79k Molecular Features + 1 Clinical variable: Age
- 6,122 Training Samples
- 1,853 Testing Samples
- 20 Cancer Types

Interpretation: Compensating for overall survival instead of disease specific survival

Estimator of cumulative/dynamic AUC for right-censored time-to-event data: Uno et al. Journal of the American Statistical Association, 2007

Large-scale clinical outcome study: TCGA Pan-Cancer Survival Analysis

Risk Stratification across 20 TCGA Cancers Types

CDK4 KO confirmation by WB:

***Approved CDK4/6 inhibitors** for metastatic ER-positive/HER2-negative breast cancer: *Kisqali* (Norvartis), *Verzenio* (Lilly), and *Ibrance* (Pfizer).

CDK4 KO vs NT Growth curves

mRNA 90 KO vs NT Growth curves

WuXi AppTec

Phenotype Projection: Identifying Causal Drivers of Cardiovascular Disease (Hypertension, Vascular Hemorrhage, and Renal Failure)

Research Collaboration with Yale Cardiovascular Research Center Deep Learning, BBN Analysis, and NLP of Single Cell RNA-seq Data

> Phenotype Projection: Identifying Causal Drivers of Cardiovascular Disease (Hypertension, Vascular Hemorrhage, and Renal Failure)

Research Collaboration with Yale Cardiovascular Research Center Deep Learning, BBN Analysis, and NLP of Single Cell RNA-seq Data

Identifying Causal Drivers of Cardiovascular Disease: Aortic Aneurysm and Atherosclerosis

(Chen et al., Nature Metabolism 2019; Li et al., JCI In press)

Research Collaboration with Yale Cardiovascular Research Center Deep Learning, BBN Analysis, and NLP of Single Cell RNA-seq Data

Novel means of tracking single cell differentiation across time. Holds significant commercial application in early phase clinical trials and drug efficacy studies.

Novel means of tracking single cell differentiation across time. Holds significant commercial application in early phase clinical trials and drug efficacy studies. *Note degree of loss of Myh11 expression in distinct cell populations relative to two different experimental perturbation strategies.

Novel means of tracking single cell differentiation across time. Holds significant commercial application in early phase clinical trials and drug efficacy studies. *Note degree of gain in Lgals3 expression in same cell populations as in pervious Myh11 slide relative to two distinct experimental perturbation strategies.

Experimental Validation of ZI-VAE AI With Imaging Mass Cytometry

Quantum Machine Learning

- Quantum computing promises enhanced performance for many classes of problems associated with large datasets.
- We are in the process of replacing algorithmic components of our **Ensemble Computational Intelligence Strategy** with their respective quantum counterparts.
- Our first algorithm was a quantum hierarchical clustering (qHCl), based on a modified
 Grover's algorithm, a quantum search algorithm that runs quadratically faster than any equivalent classical algorithm.
- We have now built statistical quantum machine learning classifiers on both IBM's universal quantum circuit architecture and the D-Wave Two X (DW2X) processor and DW2000Q Adiabatic quantum computer. Our D-Wave qML algorithms achieve comparable, and in some cases slightly better, classification performance than their classical counterparts on high-dimensional, multi-omic cancer data from the Cancer Genome Atlas (TCGA).

Binomial Classification of Tumor Molecular Subtypes Luminal A vs. Luminal B Human Breast Cancers

LumA vs. LumB Status					
Tumor Samples	311				
Luminal A	199				
Luminal B	112				
Train	250				
Test	61				

*We have developed a novel solution for the Ising problem and statistical optimization. Significant commercial application in early phase clinical trials and drug efficacy studies. High-profile research manuscript in preparation.

Binomial Classification of Tumor Molecular Subtypes: Luminal A vs. Luminal B Human Breast Cancers

LumA vs. LumB Status						
Tumor Samples	311					
Luminal A	199					
Luminal B	112					
Train	250					
Test	61					

*Quantum and classical trees are 88% concordant based on the standard Robinson–Foulds metric

*qHCL - Durr-Hoyer method based on a modified Grover's search algorithm with Euclidean distance and Ward linkage

*qHCL ran on a IBM quantum simulator using 19 qubits

Natural Language Processing

*Outer red band: mrna data *Outer blue band: methylation data *Inner blue band: genes of known function

Quantum machine learning identifies same top 100 genes as classical machine learning

Multinomial Classification of Human Cancer Types Quantum Machine Learning

Human Cancer Types	Sample Number
Liver Hepatocellular Carcinoma	358
Breast cancer	1006
Brain Lower Grade Glioma	499
Colon Adenocarcinoma/ Rectum Adenocarcinoma	551
Kidney Cancer	611
Lung Cancer	962
Total	3987
Train	3190
Test	797

*We have developed a novel solution for the Ising problem and statistical optimization. Significant commercial application in early phase clinical trials and drug efficacy studies. High-profile research manuscript in preparation.

Advanced Artificial Intelligence Research Laboratory

Academic and Industry Research Collaborations

Harvard Medical School Professor Chris Walsh Chief of Genetics and Genomics

University of Oxford

Professor Chris Holmes Computational Statistics and Machine Learning

University of Southern California

Professor Daniel Lidar Quantum Computing and Quantum Machine Learning

University of Toronto

Professor Alán Aspuru-Guzik Quantum Chemistry and Chemical Biology

WuXi AppTec Oncology

Fabrice Alphonse

Yale University School of Medicine

Professor Michael Simons Director of Yale Cardiovascular Research Center

Professor Karen Hirschi Yale Cardiovascular Research Center

Acknowledgements

WuXi NextCODE

- Jeff Gulcher
- Richard Williams
- Rob Brainin
- Hákon Guðbjartsson
- Hongye Sun
- Jim Lund
- Shannon Bailey
- Irene Blat

WuXi NextCODE Advanced A.I. Research Laboratory

- Sharvari Gujja
- Joe White
- Sweta Bajaj
- Kris Holton
- Jose Malagon Lopez
- Richard Li

Boston Children's Hospital Harvard Medical School

- Chris Walsh
- Mike Lodato

Cardiovascular Research Center Yale University Medical School

- Mike Simons
- Pengchun Yu

University of Oxford

Chris Holmes

University of Tennessee

Hao Chen

APPENDIX

WuXiNextCODE

14 DECEMBER | TWO THOUSAND EIGHTEEN

WuxiNextCODE: A Global Contract Genomics Organization

Natively Global, rapid expansion – 700+ employees, raised \$260 million (Oct 2017) Nov 2018: GMI Acquisition and \$200 million investment

ICELAND

- Birthplace of population genomics
- Database, Clinical Interpretation, Sequence Analysis development

US

- Global capital of life sciences
- World-leading clinical, deep learning capabilities

CHINA

- WuXi the quality leader in
 Life Sciences with pharma
- CLIA, CAP certified laboratory in China

IRELAND

- GMI now a wholly-owned subsidiary of WXNC
- Recruit & Whole genome sequence (WGS) 400,000 of the Irish population

WuXiNext

Lodato *et al.*, *Science* 2015 Lodato *et al.*, *Science* 2017

NEURODEVELOPMENT

Somatic mutation in single human neurons tracks developmental and transcriptional history

Michael A. Lodato,^{1*} Mollie B. Woodworth,^{1*} Semin Lee,^{2*} Gilad D. Evrony,¹ Bhaven K. Mehta,¹ Amir Karger,³ Soohyun Lee,² Thomas W. Chittenden,^{3,4}† Alissa M. D'Gama,¹ Xuyu Cai,¹‡ Lovelace J. Luquette,² Eunjung Lee,^{2,5} Peter J. Park,^{2,5}§ Christopher A. Walsh¹§

Benjamini-Hochberg-corrected p-value

LETTER

FGF-dependent metabolic control of vascular development

Pengchun Yu¹, Kerstin Wilhelm²*, Alexandre Dubrac¹*, Joe K. Tung¹*, Tiago C. Alves³, Jennifer S. Fang¹, Yi Xie¹, Jie Zhu⁴, Zehua Chen⁵, Frederik De Smet^{6,7}, Jiasheng Zhang¹, Suk–Won Jin^{1,8}, Lele Sun⁹, Hongye Sun⁹, Richard G. Kibbey³, Karen K. Hirschi¹, Nissim Hay¹⁰, Peter Carmeliet^{11,12}, Thomas W. Chittenden⁵, Anne Eichmann^{1,13}, Michael Potente² & Michael Simons^{1,14}

GO Class	Accession Number	nGOSeq Term	List Hits	List Size	Pop Hits	Pop Size	Fisher's Exact	Gene Enrich	%Gene Enrich	Pvalue LogDiff	nGOseq Gene Enrich	GOseq Accession	GOSeq Term
										_			
BP	1900744	regulation of p38MAPK cascade	2	63	4	889	0.027	1.72	42.91	0.65	0.33	0007155	cell adhesion
BP	0060055	angiogenesis involved in wound healing	3	20	4	199	0.003	2.60	64.95	0.88	0.25	0001666	response to hypoxia
BP	0001935	endothelial cell proliferation	22	1127	72	7178	0.001	10.66	14.86	0.26	0.25	0044237	cellular metabolic process
BP	0043114	regulation of vascular permeability	2	85	4	868	0.050	1.61	40.21	0.68	0.54	0006629	lipid metabolic process
BP	0010573	vascular endothelial growth factor production	3	41	6	488	0.013	2.50	41.60	0.70	0.43	0033993	response to lipid
BP	0071604	transforming growth factor beta production	3	37	8	441	0.022	2.33	29.11	0.21	0.06	2000145	regulation of cell motility
BP	0006006	glucose metabolic process	19	576	73	3432	0.028	6.75	9.244	0.64	1.53	0044767	single-organism developmental process

Chittenden *et al., Bioinformatics* 2012 Fang *et al., Nature Communications* 2017 Yu *et al., Nature* 2017

a priori Biomedical Knowledge-based Feature selection for deepCODE deep learning models

SNOMED CT Clinical Ontology - Directed Acyclic Graph (DAG)

- » Terms may have multiple parents on the tree.
- » All attributes of a selected term must hold true for all its parents.
- » Governed by "is_a" relationships.

Human Phenotype Ontology - Directed Acyclic Graph (DAG)

- » Terms may have multiple parents on the tree.
- » All attributes of a selected term must hold true for all its parents.
- » Governed by "is_a" relationships.

C. Genomic Ontology

Gene Ontology - Directed Acyclic Graph (DAG)

- » Terms may have multiple parents on the tree.
- » All attributes of a selected term must hold true for all its parents.
- » Governed by "is_a" and "part-of" relationships.

Modeling Human Breast Cancer – High Generalizability

Molecular Subtypes using Somatic Tumor Variants (STVs) and mRNA

Novel deepCODE pathway-based integration approach classifies tumor subtypes and tumor vs. normal at high accuracy This classification reveals key mutated and expressed genes/pathways.

ER- vs. ER+ Breast Tumor Classification with 0.95 accuracy 2 Mutated Pathways (10 genes); 5 Aberrant Expression Pathways (146 genes)

Luminal A vs. B Breast Tumor Classification with 0.94 accuracy 4 Mutated Pathways (172 genes); 8 Aberrant Expression Pathways (72 genes)

Cross-Platform Analysis: RNA-seq to DNA Microarray - High Generalizability

0.0

0.2

0.4

0.6

False positive rate

0.8

1.0

WuXiNextCODE

Our deep learning approach to classification of TCGA tumor Types is far superior to traditional machine learning methods (LASSO)

DeepCODE Deep Learning vs. LASSO Machine Learning Multinomial Regression Models on 28 TCGA cancer types

True Positive Probability Distributions per Cancer type

Note: deepCODE Model Calls True Positives with far greater confidence

Multinomial Human Cancer Classification: Trained: 7,618 RNA-seq samples; Tested:1,889 RNA-seq samples

Our deep learning approach to classification of TCGA tumor Types is far superior to traditional machine learning methods (LASSO)

types 1500 1000 class count lasso deepCODE 500 0-0.50 0.00 0.25 0.75 1.00 Probability

DeepCODE Deep Learning vs. LASSO Machine Learning Multinomial Regression Models on 28 TCGA cancer

Total True Positive Probability Counts for Test Data Across All 28 Cancer Types Note: deepCODE Model Calls True Positives with far greater confidence

> Multinomial Human Cancer Classification: Trained: 7,618 RNA-seq samples; Tested:1,889 RNA-seq samples

Multinomial Classification of 22 TCGA Cancer Types with Greater than 99.6% Accuracy

1.0

0.5

0.0

-1.0

-0.5

nGO Term	GO 1
cellular response to vascular endothelial growth factor stimulus	establishment of protein localization
regulation of JAK-STAT cascade	cell part morpho
insulin receptor signaling pathway	positive regulation protein kinase action
G2/M transition of mitotic cell	cellular localizati
lymphocyte activation	cellular response DNA damage sti
signal transduction in response to DNA damage	regulation of cell
I-kappaB kinase/NF-kappaB signaling	circulatory system development
regulation of G1/S transition of	cell differentiation
mitotic cell cycle B cell differentiation	cell development
phosphatidylinositol 3-kinase	ion binding
response to fibroblast growth factor	cell differentiation
Ras protein signal transduction	cell differentiation
G-protein coupled receptor	regulation of hor levels
ERBB signaling pathway	circulatory syster development
blood vessel development	primary metaboli
regulation of telomere maintenance	regulation of cell protein metabolic
cell migration	positive regulation
intrinsic apoptotic signaling pathway by p53 class mediator	cell development
angiogenesis	primary metaboli
TOR signaling	regulation of prin
DNA damage response, signal	regulation of cell protein metabolic
ERK1 and ERK2 cascade	regulation of nitro
regulation of vasculature	regulation of prin
JAK-STAT cascade	single-organism
cAMP-mediated signaling	cellular macromo
regulation of epidermal growth factor receptor signaling pathway	peptidyl-amino a
mitotic cell cycle checkpoint	cell death
p53 binding	ion binding
fibroblast growth factor receptor	cell differentiation
signaling pathway Notch signaling pathway	positive regulation
tumor necrosis factor production	negative regulati
Wnt signaling pathway	intracellular signa
0 0 F)	transduction

0

1

2

-log₁₀(p-value)

3 4

Term

ation hogenesis

ation of activity

> ation nse to stimulus

ellular olic process stem

tion

tion

tion

normone stem

polic process

ellular olic process ation of ction

ent

oolic process

orimary cess

ellular olic process nitrogen etabolic process

primary cess

sm 22

molecule cess no acid

tion

ation of rganismal process lation of olic process

gnal ransduction

Multinomial Classification of 22 TGCA Cancer Types with Greater than 99.6% Accuracy

Purple Band = Degree NLP Network Connectivity Blue Band = Function Annotation Bold + Italic = Known Drug Target (12 DNA Methylation; 4 mRNA)

Binomial Classification of Tumor Molecular Subtypes Quantum Machine Learning

Multinomial Classification of Human Cancer Types Quantum Machine Learning

Hu	man Cancer Types	Sample Number
Liver Hej	patocellular Carcinoma	358
Breast ca	incer	1006
Brain Lov	wer Grade Glioma	499
Colon Ac Rectum	lenocarcinoma/ Adenocarcinoma	551
Kidney C	ancer	611
Lung Car	icer	962
Total		3987
Train		3190
Test		797

CyTOF (Cytometry by Time of Flight)

Vs.

Zero Inflated Variational Autoencoder (VAE) of Single Cell RNA-seq Data

Cluster 18

Deep Learning, Machine Learning and Alzheimer Disease (ADNI)

Molecular Signature

Integrated Datatypes: Methylation , Expression, Variant Data

	Count		LASSO (Test set)					
Samples	152		MEGENA	nGOSeq	MEGENA	nGOSeq		
Alzheimer	36 (29/7)		MetaGene	MetaGene	Gene	Gene		
Controls	116 (93/23)							
		AUC	0.87	0.94	0.98	1		
		Accuracy	0.83	0.93	0.97	0.93		

1.00 -

Brobabilities 0.75 - 0.50 - 0.50 - 0.25 -

Non-zero Genes

Methylation: 31

Expression: 17

STV: 7

Deep Learning, Machine Learning and Alzheimer Disease (ADNI)

Molecular Signature

Single Datatypes: Methylation , Expression, Variant Data

	Count		Methylation Genes	Expression Genes	Variant Genes	
Samples	152	AUC	0.93	0.77	0.80	No Feature
Alzheimer	36 (29/7)	Accuracy	0.90	0.76	0.77	Selection
Controls	116 (93/23)	AD Test Acc	0.57	0.54	0.54	

	MEGENA Feature Selection					
	Methylation Genes	Expression Genes	Variant Genes			
AUC	0.99	0.75	0.75			
Accuracy	0.93	0.73	0.73			
AD Test Acc	0.86	0.64	0.64			

	nGOSeq Feature Selection						
	Methylation Genes	Expression Genes	Variant Genes				
AUC	0.98	0.81	0.75				
Accuracy	0.93	0.73	0.73				
AD Test Acc	0.71	0.64	0.58				

Deep Learning, Machine Learning and Alzheimer Disease (RosMap)

Pathway-Gene Level Lasso ROC Curves

RNA extracted from dorsolateral prefrontal cortex of 724 subjects

Sample set:

AD: 222 [Train: 178, Test: 44] CN: 201 [Train: 161, Test: 40]

Pathway Level Analysis:

Number of Pathways: 3340 Test Accuracy: 72.61 Test AUC: 79.26 Number of Non-Zero Pathways: 76

Gene Level Analysis:

Number of Genes: 342 Genes from 76 Non-zero Pathways Test Accuracy: 72.61 Test AUC: 80.51 Number of Non-Zero Genes: 45

Deep Learning for Chemical Reactions

Modeling Chemical Data

DL models based on different representations of molecules:

Retrosynthesis

Learning how molecules are produced using chemical reaction datasets (~1.1 M chemical reactions from U.S. patents)

		Feature learning	DL Model				
	Graph	~~~ <u>,</u>			Count	Multinomial classi ;) networks	fication with Highway 20% - Test set)
Molecule		G = (E,N)	Graph Convolutional Networks (GCN)	Product molecules	431485	Accuracy	0.79 (0.12)*
, OY	SMILES	CC(C)CC1=CC=C(C=C1)C(C)C(=O)O	Sequence-to-sequence (seq2seq)	Chemical reactions for classification	462	Multinomial classifi approach (;	cation with Multiscale 20% - Test set)
он	Fingerprint	0110101 0111010	Highway networks			Accuracy	0.90 (0.08)*
		2048 bits					*s.d. in parenthese

Taking stereochemistry into account

Learning about molecular 3D shape for chemical reaction prediction

Atoms can be arranged differently for same molecule:

		Count	Binomial classificati 20% - 20%	on based on chirality Test set)
Mole	cules with single chiral center	2762	Accuracy	0.89

Modeling Human Breast Cancers Quantum Machine Learning

Classical HCL

Estrogen Receptor Status		
Tumor Samples	959	
ER Negative	740	
ER Positive	219	
Train	768	
Test	191	

	Performance	
Algorithm	HCL	qHCL
Clustering (genes)	64	64
Clustering (sec)*	0.02	10078.30 (2h 48m)
Cluster Number	8	9
LASSO Classification Accuracy	0.9215	0.9267
LASSO ROC AUC	0.945	0.944
DANN Classification Accuracy	0.9267	0.9267
DANN ROC AUC	0.943	0.944

*Quantum and classical trees are 88% concordant based on the standard Robinson–Foulds metric

*qHCL - Durr-Hoyer method based on a modified Grover's search algorithm with Euclidean distance and Ward linkage

*qHCL ran on a IBM quantum simulator using 19 qubits

quantum HCL

WUXI NEXTCODE ANALYSIS PLATFORM

Clinical interpretation and research in one, scalable platform built for the genome from the ground up

GOR (Genomically Ordered Relational) Database Infrastructure

 For efficient storage and queries for whole genome and whole exome data using the tools listed below

Clinical Sequence Analyzer (CSA)

- Clinical geneticist-friendly tools for germline analysis of large or small families
- Automatic gene carrier analysis for confirmation
- Generate candidate genes from a standard list or with phenotype tools and stratify by variant annotations

Sequence Miner (SM)

- Advanced tool for case-control disease gene discovery or responder nonresponder companion diagnostic discovery
- Additional algorithms for covariate adjustment and pathway enrichment
- Perform phenotype scans and carrier analysis

Tumor Mutation Analyzer (TMA)

 Somatic variant analysis for defining tumor-specific variations and oncology annotations including actionable databases

