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ABSTRACT

Motivation: Digital gene expression (DGE) technologies measure

gene expression by counting sequence tags. They are sensitive

technologies for measuring gene expression on a genomic scale,

without the need for prior knowledge of the genome sequence.

As the cost of sequencing DNA decreases, the number of DGE

datasets is expected to grow dramatically.

Various tests of differential expression have been proposed for

replicated DGE data using binomial, Poisson, negative binomial or

pseudo-likelihood (PL) models for the counts, but none of the these

are usable when the number of replicates is very small.

Results: We develop tests using the negative binomial distribution to

model overdispersion relative to the Poisson, and use conditional

weighted likelihood to moderate the level of overdispersion across

genes. Not only is our strategy applicable even with the smallest

number of libraries, but it also proves to be more powerful than

previous strategies when more libraries are available. The methodol-

ogy is equally applicable to other counting technologies, such as

proteomic spectral counts.

Availability: An R package can be accessed from http://bioinf.wehi.

edu.au/resources/

Contact: smyth@wehi.edu.au

Supplementary information: http://bioinf.wehi.edu.au/resources/

1 INTRODUCTION

1.1 DGE technology

DGE technologies measure gene expression by generating

sequence tags. A number of DGE technologies are now avail-

able, including serial analysis of gene expression (SAGE;

Velculescu et al., 1995), massively parallel signature sequencing
(MPSS; Brenner et al., 2000), sequencing by synthesis (SBS,

Margulies et al., 2005) and polony multiplex analysis of gene

expression (PMAGE, Kim et al., 2007). The affordability of

DGE seems set for a breakthrough in the next few years. The

same technologies that aim to produce a $1000 genome may

also be applied to expression profiling studies, since the cost-

limiting step until recently has been sequencing. In addition,
there are a number of promising sequencing-based approaches

that are commercially available for gene expression profiling or
will be in the near future (Shaffer, 2007).

There are now several variations on the technique (Wang,
2007), but essentially a DGE system can quantify a snapshot

of gene expression, without the necessity of either knowing the

gene sequence or designing probe sequences, as is needed for

microarrays. In the case of SAGE, messenger RNA (mRNA) is
extracted from a sample of interest (e.g. a cancer tumour),

reverse transcribed into cDNA, fragmented by an enzyme into

small tags from a fixed location within the transcript. These tags
are 10–20 bp in length, depending on the protocol. The tags are

then sequenced, either by concatenating them and sequencing

a stretch of them, or are sequenced in parallel. For each
tag, a count of the number of times it was observed is recorded in

a library and a larger count is indicative of higher expression.

Where an mRNA database or a genome exists, tags can be

mapped to a particular mRNA or location in the genome.
SAGE was initially used for determining transcripts

expressed in pancreas (Velculescu et al., 1995). Since then,
SAGE and its variants have been successful in a number of

applications including creating a database of gene expression in

human cancers (Lal et al., 1999), discovering prognostic factors
in cancer (Aung et al., 2006) and the creation of an atlas of

mouse tissue expression (Siddiqui et al., 2005).
Like microarrays, many sequencing-based techniques have

applications beyond transcript profiling and we expect the

approach developed here to have applications elsewhere.

Examples include quantifying micro RNAs (known as
miRAGE) (Cummins et al., 2006), copy number analysis

(Chen et al., 2002), genome-wide DNA methylation analysis

(Hu et al., 2005) and serial analysis of chromatin occupancy
(SACO) (Impey et al., 2004).

We focus our attention on the problem of inferring differential
expression between two sets of libraries (e.g. cancer versus

normal), assuming minimal replication (at least one class has

more than one sample). Traditional SAGE is laborious and

expensive due to the cost of sequencing. Even with recent
developments in high-throughput sequencing, typically most

of the ‘real estate’ is given to sequencing more tags, as opposed

to, sequencing more libraries (samples or replicates). So, there
are rarely large numbers of libraries to compare. For this

reason, it is essential that a statistical analysis method be stable
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Throughout this article, we refer to DGE data. However, our

approach should be equally applicable to other count data of

this type, such as peptide counts from mass spectrometry data

Lu et al. (2007). We have optimized our calculations to the two

class comparison problem, but the extension to many classes or

accounting for covariates is very straightforward.
Many genome-wide statistical inference methods that share

information over all genes, be it in an ad hoc way (Tusher et al.,

2001) or via hierarchical models (Smyth, 2004), have proven

much more sensitive than standard methods. To the best of our

knowledge, this is the first exploration of a moderated test

statistic applied to the differential expression analysis of tag

count data. The novelty in our method is that we share

information over all tags in order to stabilize dispersion

estimation in small samples.

2 PRELIMINARIES

2.1 Differential expression between multiple

DGE libraries

Early methods for differential expression between multiple

libraries involved pooling the libraries in each class and using

the standard two-sample difference in proportions test or the

Fisher exact test. As mentioned previously (Baggerly et al.,

2003, 2004, Lu et al., 2005), this pooling inadequately deals

with the within-class variability and more flexible models have

been proposed. A later method (Ryu et al., 2002) computed

two-sample t-statistics on the proportions, thereby taking into

account the library-to-library variability. However, t-statistics

for very small samples when the data are genuinely non-normal

can be problematic.

Natural choices for a statistical model for tag counts may be

Poisson or Binomial. In practice, the mean-variance relationship

of either the Poisson or Binomial distribution may not provide

enough flexibility. More variation is typically observed than the

model allows, known as overdispersion. Hence, more recent

methods have explored the use of beta-binomial (Baggerly et al.,

2003) [andmore generally, overdispersed logistic (Baggerly et al.,

2004)] and overdispersed log-linear (i.e. gamma-Poisson or

negative binomial) models (Lu et al., 2005). The simulation

studies of (Lu et al.) suggest the negative binomial (NB)

assumption can be reliable even with non-NB sampling

situations and thus should provide a more flexible framework

for real data. For this reason, we make comparisons of our

model against that of Lu et al. (2005).

2.2 Statistical framework: negative binomial model

For ease of notation, we first consider a single tag. LetYij denote

the observed count for class i and library j for a particular tag.

Here j=1, . . ., ni and for now, we assume just a two-group

comparison so that i=1, 2. A special feature of our analysis is

that we require only one of n1 or n2 to be greater than 1. Strictly

speaking, previous methods (Baggerly et al., 2003, 2004;

Lu et al., 2005) may be able to operate in this setting.

However, in the extreme case of 2 libraries versus 1, one-tag-

at-a-time inference would require estimation of three parameters

from three observations, which is a rather futile exercise.

Assuming an NB distribution for the tag counts Yij, we have:

Yij � NB ð�ij; �Þ

where � is the dispersion. We choose the parameterization such

that E(Yij)=�ij and Var(Yij)=�ij (1þ� ij �), making �=0 the

Poisson distribution.
Let �i be the true relative abundance of this tag in RNA of

class i. Then �ij ¼ mij �i where mij is the library size for sample j.

To assess differences in relative abundance, the null hypothesis

H0: �1¼ �2 is tested against the two-sided alternative, and this is

repeated for each tag.

2.3 Dispersion estimation

Robinson and Smyth (2007) discuss a common dispersion

model for SAGE data, which uses all tags to estimate

a common dispersion (�). The conditional likelihood for a

single tag is formed by conditioning on the sum of counts

for each class, a straightforward calculation since the sum of

identically distributed NB random variables is also NB. The

conditioning has the effect of removing the ‘nuisance’ �
parameter, and is a generalization of restricted maximum

likelihood (REML). If the library sizes mij are equal within each

class, the single-tag conditional log-likelihood for � given

zi ¼
P ni

j¼ 1 Yij is:

lgð�Þ ¼
X2
j¼ 1

Xni
j¼ i

log�ðyij þ ��1Þ þ log�ðni�
�1Þ

"

� log�ðzi þ ni�
�1Þ � nilog�ð�

�1Þ

�
:

ð1Þ

The common dispersion estimator maximizes the common

likelihood lCð�Þ ¼
P

G
g¼ 1 lgð�Þ where G is the number of tags.

In the real situation of unequal library sizes, the counts are not

identically distributed, and the conditioning argument does not

hold exactly. Robinson and Smyth (2007) use a quantile

adjustment to adjust the observed counts up or down depending

onwhether the corresponding library sizes are belowor above the

geometric mean (called qCML for quantile adjusted conditional

maximum likelihood). This creates approximately identically

distributed pseudodata that can be inserted into Equation (1),

summed over all tags and maximized with respect to �, resulting
in a common estimate. With even as few as 100 tags, the qCML

estimate is the least biased over a broad range of conditions

among a panel of commonly used estimators (Robinson and

Smyth, 2007).

2.4 Statistical testing

For testing the difference in expression between two conditions,

we compare two statistical tests in what follows. As a default,

we use the Wald test that was used in Lu et al. (2005). The Wald

test simply divides �̂2 � �̂1 by its estimated standard error.

Secondly, we use our previously developed exact test (Robinson

and Smyth, 2007).
Briefly, the exact test works as follows. The same quantile

adjustment that is used to adjust the tag counts to a common

library size for estimation is used to construct the exact test.

Using this pseudodata, we again use the fact that a sum of

independent and identically distributed NB random variables is

M.D.Robinson and G.K.Smyth
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also NB. By conditioning on the total pseudosum (an NB

random variable), we can calculate the probability of observing

counts as ormore extreme thanwhat we observed, resulting in an

exact P-value.

3 MODERATED DISPERSION ESTIMATION
VIA WEIGHTED LIKELIHOOD

3.1 Weighted conditional likelihood framework

The assumption of common dispersion, as in Robinson and

Smyth (2007), offers a significant stabilization, compared with

tag-wise estimation, especially in very small samples. However, it

is not generally true that each tag has the same dispersion,

suggesting that inference can be improved by more sophisticated

and less drastic stabilization techniques. For microarray data,

empirical Bayesian (EB) hierarchical models have been used to

stabilize the variance estimates by sharing structure over all

genes (Smyth, 2004). Such strategies are adaptive. If the

variances are not very different, the EB model arrives at

essentially a pooled estimate. However, if the variances are

very different, the EB model shrinks a lesser amount. For our

NB model, an EB solution is hampered by the fact that the NB

falls outside the exponential family and no conjugate prior for

� exists. Bradlow et al. (2002) suggest a polynomial approxima-

tion in order to avoid the computational overhead of stochastic

Markov Chain inference methods. Instead of enforcing

a common dispersion on all tags, we propose instead to squeeze

each tag-wise dispersion (denoted as �g, with an extra subscript

to denote the tag) towards the common value (�). We employ

weighted likelihood and choose likelihood weights so as to

approximate an EB solution.

We define the weighted conditional log-likelihood (WL) for

�g to be a weighted combination of the individual and common

likelihoods:

WL ð�gÞ ¼ lgð�gÞ þ �lCð�gÞ ð2Þ

where � is the weight given to the common likelihood. This is

a special case of weighted likelihood defined by Wang (2006).
The common likelihood plays the same role in the WL as the

prior for �g would play in a Bayesian hierarchical model, with

� the prior precision. If �=0 in (2), then we get tag-wise

qCML estimates. At the other extreme, if � is chosen

sufficiently large, the contributions from any individual log-

likelihood is outweighed by the common likelihood and the

result is a common dispersion. In between these two extremes

lies an estimation scheme where the tag-wise estimates are

somewhere between the individual and common estimates.

3.2 Selecting a as an approximate EB rule

We wish to select an appropriate � that will make the

estimation adaptive. If evidence suggests that dispersions are

not very different, � should be chosen high enough to

encourage all tags to shrink strongly towards the common

estimate. However, if there is evidence for variable dispersions,

� should be selected to shrink a lesser amount.
To understand our strategy for selecting �, suppose that the

qCML individual estimators �̂g were normally distributed with

means �g and known variances � 2
g, and assume the hierarchical

model:

�̂gj�g � Nð�g; �
2
gÞ; �g � Nð�0; �

2
0Þ; g ¼ 1; . . . ;G:

The Bayes posterior mean estimator of �g would be:

�̂B
g ¼ Eð�gj�̂gÞ ¼

�̂g=�
2
g þ �0=�

2
0

1=�2g þ 1=�20
:

In practice, the hyperparameters �0 and �20 are unknown but

can be estimated from the marginal distribution of �̂g to obtain

an EB rule. Our strategy is to choose � so that WL coincides

with this EB rule. Under this idealistic normal model, the

maximum WL estimator is:

�̂WL
g ¼

�̂g=�
2
g þ �

PG
i¼ 1 �̂i=�

2

1=�2g þ �
PG

i¼ 1 1=�
2
i

:

This agrees with �̂B
g if �0 equals the common dispersion

estimator

�0 ¼ �̂0 ¼

PG
g¼ 1 �̂g=�

2
gPG

g¼ 1 1=�
2
g

and

1=� ¼
XG
g¼ 1

�20=�
2
g : ð3Þ

It only remains to have an estimator for �20 . Under the

normal model, ð�̂g � �0Þ
2=ð�2g þ �20Þ � �2

1, so a consistent

estimator of �0 is obtained by solving

XG
g¼ 1

ð�̂g � �̂0Þ
2

�2g þ �20
� 1

" #
¼ 0: ð4Þ

This rule for choosing � is not available to us directly, because

the qCML estimators �̂g are far from normally distributed, do

not have known variances, and in fact can take values on the

boundary of the sample space at zero or infinity with positive

probability. To evade these difficulties, we take advantage of the

fact that score statistics (log-likelihood derivatives) converge to

normalitymore rapidly than domaximum-likelihood estimators.

We also note that the estimating Equation (4) can be written in

terms of the likelihood score Sg(�)¼ @lg(�)/@ � and expected

information Ig(�)=E(Jg), Jg= � @2lg(�)/@ �
2, functions for �g.

This allows us to state our estimation algorithm as follows.

(1) Find the common dispersion estimator �̂ 0 which max-

imizes lC.

(2) Evaluate Sgð�̂0Þ and Igð�̂0Þ for each tag.

(3) Estimate �0 by solvingXG
g¼1

S2
g

Igð1þ Ig�20Þ
� 1

" #
¼ 0:

If
P

S2
g=Ig5G then �0=0.

(4) Set

1=� ¼ �20
XG
g¼ 1

Ig

(5) Obtain weighted likelihood estimators ~�g by maximizing

WL(�g).

Moderated statistical tests
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This algorithm agrees with (3) and (4) but is of more general
application because it uses only quantities evaluated at �̂0 to
estimate �0.
The expected informations Ig are difficult to compute directly,

but can be well approximated using the observed informa-
tions Jg. For any given value of �g, Ig should be very nearly

directly proportional to the total count z1 þ z2. Hence,
we compute the linear regression with intercept zero of Jg on
the total pseudo-count (see Fig. 1), and use the fitted values

to represent Ig.
The algorithm can actually be applied to any transformation

of �. We have found it convenient to implement the algorithm

on the �=�/(� þ 1) scale because � takes strictly bounded
values.

3.3 Interpretation of the approach

The above algorithm has a nice statistical interpretation. If the

dispersions are truly equal (all �g=�0), then EðS2
gÞ ¼ Ig so that

�20 will be estimated close to zero and hence � will be large.
If, however, the dispersions are truly different, then E(Sg) will

be non-zero and S2
g will be greater than Ig on average, forcing �20

to be greater than zero and less weight is given to the common
likelihood. The more dissimilar the dispersions are, the greater

�20 will be estimated and the less shrinkage is done. The fact that
EðS2

gÞ ¼ Ig under the null hypothesis is an exact result which
does not rely on asymptotic normality. This ensures that our

algorithm has good qualitative behaviour even when the
number of libraries is small.

4 RESULTS

4.1 Squeezing improves estimation of dispersion

in the negative binomial model

For the NB model of tag counts, estimation of � is a crucial
step and can have an impact on the determined significance of

differential expression. Note that � does not have as direct an
influence on statistical tests as the variance does in microarrays,
since the variance in our data is also a function of the mean.

Lu et al. (2005) use a PL model for the estimation of � and
estimate separately for each tag. Here, we calculate a common
dispersion over all tags and shrink the tag-wise dispersions

towards it, in a novel approximate EB strategy.
We first show that our approximate EB approach improves

overall estimation of the dispersions in terms of mean squared
error (MSE). We compare four estimation strategies: tag-wise

qCML, WL using the approximate EB rule, common qCML
(Robinson and Smyth, 2007) and tag-wise PL (Lu et al., 2005),

over three true situations. For all comparisons here, we fixed
the library size at 50 000 and means at 10 (�¼ 0.0002), sampled
1000 tags from NB and repeated the simulation 50 times.

Overall MSE was calculated for each simulation. MSEs are
calculated on the � ¼ �

1þ� scale, since there is a non-zero
probability of an infinite tag-wise qCML estimate. The first

situation considered is a medium number of libraries (n=4)
and a fixed dispersion, shown in Figure 2A. This situation
obviously favours a common dispersion estimate, and the

common dispersion estimate has the lowest MSE. But, note
that the approximate EB strategy does well here also, giving

enough weight to the common model so as to squeeze the tag-

wise dispersions almost entirely to the common value. The

remaining two situations involve random dispersions, here

taken from a gamma distribution. We picked gamma para-

meters for the simulation to match the empirical dispersion

estimate distribution (using approximate EB estimates) on the

Zhang dataset (Zhang et al., 1997), and used a medium (n=4)

and large number of libraries (n=10) (Fig. 2B and C,

respectively). We can see that the approximate EB solution

provides a significant advantage for estimating dispersions and

adapts to the situation, showing the relevance of the evidence

contained in the scores and informations.
The weights adapt well to the situation. In the case of fixed

dispersions, the weights are large enough to shrink estimates

almost to the common value. In the face of more dispersed true

dispersions, the weights decrease, as expected. In the case of

random dispersion and a larger sample, again the weights

decrease to automatically adjust for having more information

contained in the tag-wise estimates, showing the approximate

EB system seems to be achieving what is expected and therefore

provides a suitable rule in practice.

4.2 Comparison of methods: simulated data

Improvements in dispersion estimation can improve our ability

to separate the differentially expressed (DE) tags from non-DE.

We repeat a subset of the simulation study of Lu et al. (2005)

and consider an extended, more realistic study.
The simulation in Lu et al. (2005) considered sampling 10 000

tags under two conditions, with a fixed �1, libraries sizes sampled

uniformly between 30 000 and 90 000, comparing 5 libraries of

1–5 libraries of the other. For 5000 tags, an implanted difference

of �2= b.�1 is used and the remaining tags have no difference

(�2= �1). When sampling from NB, they choose fixed disper-

sions at 0.17, 0.42 and 0.95. We repeated their performance

analysis for �1¼ 0.0002 and b=4, which is directly comparable

Fig. 1. An illustration of the expected information calculation. Total

1000 tags are sampled for n¼ 4 libraries under �¼ 0.42, �¼ 0.0002,

m¼ 50 000. X-axis shows the total counts (z) and Y-axis shows the

observed information Jg. The line through (0,0) predicts the expected

information Ig as a function of z.
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to Figure 2 of Lu et al. (2005). In Figure 3 in this article, we

compare receiver-operating-characteristic (ROC) curves using
the Wald test statistic they used, both for their PL estimate and

our shrunken estimate. That is, we fit the generalized linear
model of Lu et al. (2005) with our � estimates to show that an
improved estimator is beneficial. In all cases, an improved

estimator for the dispersions improves the ability to separate the
truly DE and non-DE tags. Here, there is very little difference

between the exact and Wald tests.
Next, we extend their simulation study in a number of simple

yet important ways. First, wemake the problemmore realistic by
having non-fixed dispersions. Again, we set the random
dispersions to the gamma-approximated empirical estimate

distribution (shape¼ 0.85, scale¼ 0.5). Instead of a fixed �,

we use the empirical distribution of � estimates for the Zhang

dataset and assign the gamma-sampled dispersions to the �s at
random. A subtle change we make to our simulation is that the
multiplier of the implanted differences, b, does not always
increase the true means, since larger counts lead to easier

estimation problems. Instead, for the tags sampled with true
differences, we use �1=

ffiffiffi
b

p
and �1 �

ffiffiffi
b

p
as the true proportions.

Finaly, we consider a more realistic 10% differentially expressed

tags and compare small (n1¼ n2¼ 2) and moderate (n1¼ n2¼ 5)
numbers of libraries.
Instead of ROC curves, we prefer false discovery (FD)

plots since they highlight the performance at the top ranked
tags. Figure 4 shows FD plots for four situations: small and
medium true difference (b=4, 8) and small and medium

Fig. 2. Boxplots showing the distribution of MSEs over 50 simulations under three sampling conditions: (A) constant � with n¼ 4; (B) gamma

distributed � with shape 0.85 and scale 0.5 with n¼ 4 (C) gamma distributed (same parameters) with n¼ 10. Estimators are tag-wise qCML,

moderated via WL, common qCML and tag-wise PL, respectively. Each simulation is comprised of sampling 1000 tags with mean 10. MSEs are

calculated on the �¼�/(1þ�) scale.

Fig. 3. ROC curves for three statistical tests for separating 5000 truly DE tags from 5000 non-DE tags, with 5 libraries of each condition.

Exact.EB represents the small sample test of Robinson and Smyth (2007) with the moderated dispersion estimates of this article. Wald.PL uses the

Wald test and the PL estimate of Lu et al., (2005). Wald.EB uses the Wald test with our estimator. FPR: false positive rate (1-specificity), TPR:

true positive rate (sensitivity). Here, �1=0.0002 and for the DE genes, �2=0.0008. The 10 000 tags are sampled under true dispersions: (A) �=0.17;

(B) �=0.42 and (C) �=0.95.

Moderated statistical tests
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number of libraries. Tags are ranked according to their test-

statistic (Wald) or P-value (approximate exact test). Since there

are 1000 truly DE tags, the top 1000 are selected (x-axis) and the

number of false detections is plotted (y-axis) at each point. Fewer

FDs is obviously preferred. We see that using the approximate

EB estimate for dispersion estimation results in fewer FDs on

average in all cases, regardless of the statistical test being used.

If wewere to validate the top 200 tags, e.g. the ratio of ‘Exact.EB’

to ‘Wald.PL’ FDs is 80/95, 42/59, 31/35 and 3/7 for the four cases

presented in Figure 4, thus showing a consistent and practically

meaningful improvement.
Of course, this only suggests the statistics are in a desirable

order. Since the exact test does not rely on asymptotics for its

distributional assumptions, it is best able to achieve a set false

positive rate, allowing one to set reasonable cutoffs, presumably

after adjusting for multiple testing. In a study of false positive

rates for small NB samples, Robinson and Smyth (2007)

demonstrate that the exact test is best able to achieve the

nominal false positive rate and in fact, the Wald test has the

highest false positive rate of all the asymptotic tests. Permutation

tests (Tusher et al., 2001) with such few libraries are unlikely to

create a reasonable null distribution.

4.3 Application to SAGE data

We apply the method to the SAGE data from Zhang et al.

(1997), since true biological replicates are available. Our

comparison is just between two libraries of normal colon to

two libraries of colon tumour. Figure 5A shows the both the

dispersion and proportion (�) estimates, assuming no difference

between the sets of libraries. Here, we see that at low

abundance, there are a small number of tags with large

dispersion. Most of these are cases where one of two replicate

counts is zero and the other is non-zero, and in some cases, the

tags counts are all zero in one condition and have only one non-

zero in the other. In these cases, the one-tag-at-a-time qCML

estimate is �=1 (�=1), so the squeezing towards the

common estimator is essential. Note that it is not surprising

that there is a decreasing trend of dispersions as the abundance

increases, since the variance of the observations is a function of

the mean.
Applying the exact test to the comparison of normal colon

samples to colon tumours, we find that 49 genes are up-regulated

and 115 genes are down-regulated in tumours, at a 5% false

discovery rate (using a Benjamini–Hochberg correction). Figure

5B shows the analogous plot to an ‘MA’ plot for microarray

data, where the x-axis is indicative of abundance and the y-axis

show the magnitude of the change between the two conditions.

5 CONCLUSION

Estimation of dispersion for NB data is critical for assessing the

significance of changes in themean. For tag count data with even

the most minimal amount of replication, we have introduced

a weighted conditional likelihood estimator that squeezes

individual tag-wise dispersions towards the common dispersion.

The procedure can be thought of as using a data-dependent prior

and finding the maximum a posteriori estimate, or simply as

weighted likelihood. We choose the amount of shrinkage

according to an approximate empirical Bayes rule. The EB

Fig. 4. False discovery plots for different numbers of libraries and different magnitudes of implanted differences. x-axis is the number of genes

selected (in order from most DE to least DE) and of that many genes selected, the y-axis gives the number selected which are false detections. Note

the Y-axis is presented on the log-scale.
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rule works well in practice, adapting to the true similarity of the

dispersions, according to sample size and the evidence contained

in the first and second derivative of the conditional log-

likelihood (scores and informations). The increased precision

in estimating dispersion gives an increase in power for testing

between experimental conditions. The exact test performs as well

or better than the Wald test for testing differences between two

experimental conditions. The exact test has the added advantage

that it achieves close to its nominal error rates.

Our weighted likelihood shrinkage algorithm is of very

general application, requiring only the log-likelihood function

and its first two derivatives evaluated at a common parameter

estimate. This approach may prove useful in a number of other

genome-scale estimation and inference problems.
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