
Introduction to R
& Bioconductor
NATHALIE A . VLADIS (WITH MATERIALS FROM KRIS HOLTON)

QUANTITATIVE CURRICULUM FELLOW

ORGANISED BY HMS RESEARCH COMPUTING

Keep an eye out for
Bio Code Club!

Last Wednesday of
each month during
the Summer 4-5 pm
TMEC 304

Once a week in
TMEC starting
September
Time & Venue TBC

PollEv.com/nathalievlad223

Getting to know you!

https://pollev.com/nathalievlad223?_ga=2.74508314.966697810.1560884834-1794009601.1560884834

R INTRO OBJECTIVES

• Familiarize ourselves with R Studio and some fundamental R commands

• Identify some key R objects that will help us store & manipulate data

• Use some popular mathematical R functions

• Discover R’s potential through a class example

WHY R?

• Its Free!

• Open-source license (anyone can download and modify the code)

• Runs everywhere

• Huge Community and Support

• Very popular amongst biologists

GETTING STARTED WITH
R & R STUDIO

WELCOME TO R STUDIO

WELCOME TO R STUDIO

WELCOME TO R STUDIO!

WELCOME TO R STUDIO

SOME BASIC SYNTAX

• To “print” in R, just type a variable or object’s name, R will display as much as
it can

• Commenting in R

means what appears afterwards is not computed

Your best friend when you write long scripts!

• You can copy-paste multiple times, this overwrites

• Often “ and ‘ are used interchangeably – Be as consistent as you can!

FINDING &
READING DATA

.CSV FILES

• Stands for comma-separated values

• A delimited text file that uses a comma to separate values

• A CSV file stores tabular data (numbers and text) in plain text

• One of the most commonly used file formats for data storage in the biomedical sciences

READING DATASETS WITH READ.CSV()

• First check your working directory!

> read.csv(“mydataset.csv”) # Read a file in the working directory

> read.csv(file.choose()) # File locator

Tip no 1: Do not forget to use

quotation marks!

Tip no 2: Check your operating system!

Syntax will differ from Mac to Windows to

Linux.

INSPECTING YOUR WORKSPACE

> getwd()

> setwd(“your path”)

> library() # Lists the packages installed on your computer

> library(“package_name”) # Loads packages into your session

> sessionInfo() # Lists the packages loaded into memory

PATHS
If these formats don’t work for you, try:

> setwd(“C:\\Users\\mkf8\\Downloads”)

INSTALLING PACKAGES FROM CRAN

> install.packages(“ggplot2”) # Download and install package “ggplot2”

> install.packages() # Download and install packages

FINDING FUNCTIONS WITH “APROPOS”

> apropos(“^read”) # Search for function names starting with “read”

> apropos(“\\read$”) # Search for function names ending with “read”

GETTING HELP

> help.start() # Manuals and reference guides

> help(t.test) # Dispay the help page for function ‘t.test’

> ?t.test # … a shorthand for the same thing

> args(t.test) # Displays the argument names and corresponding default

values of a function

FUNCTION
ARGUMENTS

• CONSOLE INPUT:

> args(plot)

• CONSOLE OUTPUT:

function (x, y, …)

If you would like more information:

> help(plot)

COMMAND LINES & SCRIPTS

COMMAND LINES & SCRIPTS

SAVING & CLOSING YOUR SESSION

EXPLORING R

R OBJECTS

CREATING VARIABLES IN R

• Assign variables with a <-(traditional) or = (new way)

• A variable can be overwritten so be careful with naming

• Names can be UPPER/lowercase/./_ mixes, but can’t start with a number!

> my_number = 5

> my_number

[1] 5

VECTORS

• Basic way to store data

• c stands for “concatenate”: put these together as a vector

> myvector = c(3,5,7)

> myvector

[1] 3 5 7

VECTOR TYPES

• numeric:

> mynumeric = c(3,5,7)

• character:

> mycharacter = c(“bob”, “nancy”, “jose”)

• logical or Boolean:

> mylogical = c(TRUE, FALSE, TRUE)

CHANGING YOUR VECTOR TYPE

• General workflow:

> myvector = c(3,5,7)

> myvector_char = as.character(myvector)

> myvector

[1] “3”, “5”, “7”

• Where this comes in handy: when R says you are trying to do an operation on your

variable that is one type of vector, when it has to be another type.

• Can be done with other types e.g. matrices

• Use wisely

LISTS

• Like vectors with mixed data types (numeric, character, logical)

> mylist = list(3, “TP53”, FALSE)

[[1]]

[1] 3

[[2]]

[1] " TP53 "

[[3]]

[1] FALSE

• “unlist”-ing with unlist() a list tries to coerce the data to an atomic vector of all the

same type (lowest common denominator, usually a character)

Try it!

What happens when you

unlist mylist?

FACTORS
• Makes a vector nominal (able to be ordered by integers)

• Create a variable “gender” with 2 "male" entries and 4 "female" entries

> gender = c(rep("male", 2), rep("female", 4))

> gender_factor = factor(gender) # stores gender as 2 2’s and 4 1’s and associates

> gender

[1] male male female female female female Levels: female male

Now 1=female, 2=male internally (alphabetically)

R now treats gender as a nominal variable

MATRICES
• Data must be all the same type (numeric, character, logical)

• Columns must have the same length

• Creation:

> mymatrix = matrix(c(1:6), nrow=3, ncol=2)

• Indexed by [row,column]

> mymatrix[1,1] #returns item in row 1, column 1

> mymatrix[1,] #returns all of row 1

> mymatrix[,1] #returns all of column 1

DATAFRAMES
AKA DF
• Very popular data structures!

• Subset of matrices allowing mixed types (numeric, character, logical)

> mydataframe = as.data.frame(mymatrix)

• You can give columns names so you can index by them

> names(mydataframe) = c(“column1name”, “column2name”)

DATAFRAMES
INDEXING & CONVERTING

• Can use matrix or $ notation

> mydataframe$column1name #works on column1

> mydataframe[,1] #works on column1

> mydataframe[“rowname1”,] #works on rowname1

> mydataframe[1,] #works on row 1

> mydataframe[-1,] #excludes row 1

• To turn a DF into a matrix for certain operations:

> mymatrix = as.matrix(mydataframe)

Note: This turns data into all the same type

Remember: the lowest

common denominator

is usually character!

ADDING & JOINING
ROWS & COLUMNS

• “rbind” to add a row or another df/matrix to a pre-existing dataframe/maxtrix

> mymatrix = rbind(mymatrix, newrow)

> mymatrix = rbind(mymatrix, matrixtwo)

• “cbind” to add a column or another df/matrix to a pre-existing dataframe/matrix

> mymatrix = cbind(mymatrix, newcol)

> mymatrix = cbind(mymatrix, matrixtwo)

A SELECTION OF HANDY FUNCTIONS

> class(object) #gives object class

> mode(object) #gives object type

> length(vector) #gives length

> dim(object) #gives matrix/dataframedimensions

> nrow(object) #gives number of rows

> ncol(object) #gives number of columns

> str(object) #gives object structure

MORE HANDY FUNCTIONS!

> head(object) #gives first 6 rows

> tail(object) #gives last 6 rows

> summary() #quick statistics

Try it!

How many rows did R

return?

EXPLORING R

BUILT-IN MATH FUNCTIONS

R IS ESSENTIALLY A FANCY CALCULATOR
AS IS ANY COMPUTER..

> 18 + 22 #addition

> 18 - 12 #subtraction

> 18 * 2 #multiplication

> 18 / 2 #division

> 18 %/% 4 #integer part of quotient

> 18 %% 4 #modulo (remainder)

> 18 ^ 2 #exponent

BUT BETTER!
R BUILT-IN MATH FUNCTIONS

> max(object) #max

> min(object) #min

> sum(object) #sum

> mean(object) #mean

> median(object) #median

> range(object) #range

> var(object) #variance

> sd(object) #standard deviation

> length(object) #number of values

BUT BETTER!
MORE R BUILT-IN MATH FUNCTIONS!

> log(10) #natural log (base e)

> exp(2.302585) #antilog (e raised to power)

> log10(100) #log base 10

> sqrt(88) #square root

> factorial(8) #factorial

> choose(12, 8) #combinations (binomial coefficients)

> round(log(10), digits=3) #round to specified digits

> abs(18 / -12) #absolute value

BUT BETTER!
MORE R BUILT-IN MATH FUNCTIONS!

> runif(5) #number of random numbers between 0-1

> rnorm(5) #random numbers from uniform normal distribution

SERIES SHORTCUTS

• Series: colon or “seq”

> 10:1

> seq(from, to, by)

> seq(1, 10, 2) # gives odd numbers

• Repeat

> rep(what, times)

> rep(10, 10)

LOGICAL OPERATIONS
• Test of condition: returns logical TRUE/FALSE

> test1= c(1,2,3)

> test1 > 2

[1] FALSE FALSE TRUE

>test1 >= 2

[1] FALSE TRUE TRUE

> which(test1 >= 2)

[1] 2 3

> test1[test1 >=2] # subsetting data based on equality condition

CONTROL STRUCTURES

FOR LOOPS IN R

for (val in sequence){

statement

}

myvector <- c(2,5,3)

for (val in myvector) {

print(val)

}

[1] 2

[1] 5

[1] 3

• Way to iterate over data

WRITING FUNCTIONS IN R

• That’s how you can pack up multiple commands into a structure you can use again
and again!

sum.of.squares = function(x,y) {

x^2 + y^2

}

> num_1 = 3

> num_2 = 2

> sum.of.squares(num_1, num_2)

[1] 13

Pro Tip:

Name your functions

wisely!

Brains are unreliable

machines..

HANDY TRICKS
THE APPLY FUNCTION FAMILY

• Returns an object as a result of applying a function to an entire data frame,
matrix or list

• The apply functions are marginally faster than a regular for loop

HANDY TRICKS
THE APPLY FUNCTION FAMILY

apply (to_what, how, function)

> mymatrix = matrix(c(1:6), nrow=3, ncol=2)

About how: “1” is to apply over rows, “2” is to apply over columns

> apply(mymatrix,1,sum)

[1] 5 7 9

> mymatrix

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6
Your Turn:

Try it with columns!

HANDY TRICKS
VARIATIONS OF APPLY

Ta
b
le

 t
a
ke

n
fr

o
m

 h
tt
p
s:

/
/
w

w
w

.g
ur

u9
9
.c

o
m

/
r-

a
p

p
ly

-s
a

p
p
ly

-t
a

p
p
ly

.h
tm

l

ONE MORE FOR THE ROAD!
REPLICATE()

replicate(repetitions, function(data))

[,1] [,2] [,3] [,4] [,5]

[1,] 0.9559560 -0.1175259 -0.7622642 -1.0084890 -1.5176103

[2,] -0.7266965 -2.4495685 -0.6873605 -0.1995848 -1.3064050

[3,] 0.4646987 -1.1877134 -0.9814098 -0.6633240 0.2236935

> replicate(5, rnorm(3))

Your Turn:

Sample the normal

distribution 3 times then

sum all of your

outcomes together!

> my_reps = replicate(5, rnorm(3))

HANDY PACKAGES
FOR DATA CLEANING AND MANIPULATION

Living the R Life:

An Example

CLASS EXAMPLE
OUR DATASET

If these formats don’t work for you, try:

> setwd(“C:\\Users\\mkf8\\Downloads”)

CLASS EXAMPLE
QUICK STATS

• You can get some quick descriptive stats with summary()

> summary(geneset)

Pro Tip:

Starting with so plotting and

descriptive statistics is the best way

to go!

Do not dive into inferential analysis

without doing some exploratory

work first.

CLASS EXAMPLE
IMPORTING & VIEWING DATA
• Import your new dataset with headers and row names.

> geneset = read.csv('dataset_1.csv', header = T, row.names = 1)

• Can you remember which function allows us to take a peak at the first rows?

> head(geneset)

CLASS EXAMPLE
TRANSPOSING DATA

• as.data.frame() will turn you data into a dataframe again!

> geneset_mat = as.matrix(geneset)

> geneset_mat_t = t(geneset_mat) # ‘t’ is for ‘transpose’

> head(geneset_mat_t)

Your Turn:

Try getting some quick

stats on your newly

transposed dataset!

What happens?

• Need your data to read the other way?

• Turn it into a matrix, and transpose!

LET’S TRY SOME PLOTS!

CLASS EXAMPLE
BOXPLOT

> boxplot(geneset, xlab = 'Sample', ylab = 'Gene Values', main = 'An OK Boxplot')

CLASS EXAMPLE
BOXPLOT

> boxplot(geneset, xlab = 'Sample', ylab = 'Gene Values', main = 'A NEXT LEVEL Boxplot',

col = c('red', 'blue', 'green', 'yellow', 'grey', 'orange'))

CLASS EXAMPLE
GENE BOXPLOT

> boxplot(geneset_mat_t, xlab = 'Gene', ylab = 'Gene Value', main = 'Gene Boxplot')

CLASS EXAMPLE
HANDY PLOT OPTIONS

• main = “Title” # main title

• xlab= “x label” # x-axis label

• ylab=“y label” # y-axis label

• xlim(N,N) # x-axis start, stop

• ylim(N,N) # y-axis start, stop

• col =c(“color1”, “color2”) # vector with colors

• cex= N # size of text and symbols

• pch= N # plot point symbol type

There are many many

more!

CLASS EXAMPLE
BARPLOTS

• For barplot() you will need a matrix

> barplot(geneset_mat, xlab = 'Sample', ylab = 'Gene Value', main = 'Sample Bar Plot')

Your Turn:

Try to turn the plot blue!

CLASS EXAMPLE
HISTOGRAMS

• Plot a histogram of the frequency of values in our dataset

> hist(geneset_mat)

OTHER PLOT TYPES
AVAILABLE IN R

S
lid

e
 f

ro
m

 S
im

o
n

A
n
d

re
w

s
(B

a
b

ra
ha

m
B
io

in
fo

rm
a

ti
cs

)

Anything is

possible!

POPULAR PLOTTING PACKAGE
GGPLOT 2

Fr
o
m

 h
tt
p

:/
/
w

w
w

.c
o
o
k
b

o
o
k
-r

.c
o
m

http://www.cookbook-r.com/

BIRD BONES
CLASS ACTIVITY

• Have a look at the bird dataset.

BIRD BONES
CLASS ACTIVITY

• Have a look at the bird dataset.

•Plot a histogram of huml ‘Length of Humerus’ from the bird dataset.

• What did you see?

Hint: You can use $ to subset columns from data

What happens if you use plot() with ‘huml’ and ‘humw’

Bonus Question

Can you make the points colors match their ecological group (type)

ANALYSIS EXAMPLES

CLASS EXAMPLE
HCLUST

• To create an hierarchical clustering of your samples you will need to calculate
the distance between every point in the matrix

• Use the transposed format!

> distances = dist(geneset_mat_t)

> clusters = hclust(distances)

> plot(clusters)

CLASS EXAMPLE
A SIMPLE T-TEST

> t.test(geneset[,1:3], geneset[,4:6])

> ?t.test

Make sure you are using the

correct options!

One vs two sided. Paired vs

independent samples

USING THE O2 CLUSTER

• Working in R studio Good for proofing code or for working with datasets
you can store in your computer, but not a scalable solution for High
Performance Computing (HPC)

• User Training has dedicated O2 sessions!

A short introduction

OUR OBJECTIVES FROM THIS INTRO

• Explain what is Bioconductor is

• Identify some handy packages

• Set up Bioconductor on your workspace

• Where to start?

WHAT IS IT?

• Open-source, open-development software project for the analysis of genomic data

• High-quality documentation and reproducible research

Table from https://www.datacamp.com/community/tutorials/intro-bioconductor (Author Minoo Asthiani)

https://www.datacamp.com/community/tutorials/intro-bioconductor

M
a

ri
p

o
sa

 S
y
m

p
h
o
ny

 O
rc

he
st

ra

USEFUL LINKS

Package Inventory

https://bioconductor.org/packages

Support Forum

https://support.bioconductor.org

https://bioconductor.org/packages
https://support.bioconductor.org/

POPULAR R PACKAGES

SETTING UP BIOCONDUCTOR

• To ensure you are getting the most up to date version of a given package use BiocManager

Cool Bioconductor Feature: Packages come with vignettes. Instructions on how to use the

package and workflow examples!

WHERE TO GET STARTED
• Everything you need to get started, building
from the ground up!

• Introduction to Key Packages

• Introduction to Popular Workflows

https://www.youtube.com/playlist?list=PLA0uMgYDbgCKNH8C

m-68gEnw39fR5mhFa

Keep an eye out for
Bio Code Club!

Last Wednesday of
each month during
the Summer 4-5 pm
TMEC 304

Once a week in
TMEC starting
September
Time & Venue TBC

Enjoy!

Need help or advice finding
resources?

nathalie_vladis@hms.harvard.edu

Please share your feedback about this session at:
https://forms.gle/Exw7Dnh2TqqYJePm6

APPENDIX
Kate Holton’s Materials

Here you will find info about:

• Setting up your connection to the 02 cluster Quick Start
• Importing files from other Software

90Research Computing

https://rc.hms.harvard.edu/

R on

91Research Computing

https://rc.hms.harvard.edu/

Importing Data: text file

• You can specify how your data is separated (comma separated: “,” tab: “\t”

space: ” “), and if the first row is a “header” row containing the column

names)

 mydata <- read.table(file=”PathToFile/filename.csv”, header=TRUE, sep=”,”)

 add “row.names=1 to make column 1 the rownames (only if these are unique identifiers!)

 stringAsFactors=FALSE converts all strings to characters

92Research Computing

https://rc.hms.harvard.edu/

Importing Data from MS Excel

• Read in the first worksheet from the workbook myexcel.xlsx

• First row contains variable (column) names

> library(xlsx) #install the first time from CRAN

> mydata <- read.xlsx("c:/myexcel.xlsx", 1)

• Read in the worksheet named mysheet

> mydata <- read.xlsx("c:/myexcel.xlsx", sheetName = "mysheet")

93Research Computing

https://rc.hms.harvard.edu/

Importing Data from SPSS

• In SPSS: save SPSS dataset in transport format

get file='c:\mydata.sav'.

export outfile='c:\mydata.por'.

• in R

> library(Hmisc) #install the first time from CRAN

> mydata <- spss.get("c:/mydata.por", use.value.labels=TRUE)

last option converts value labels to R factors

94Research Computing

https://rc.hms.harvard.edu/

Importing Data from SAS

• In SAS: save SAS dataset in transport format

libname out xport 'c:/mydata.xpt';

data out.mydata;

set sasuser.mydata;

run;

• In R

> library(Hmisc) #install the first time from CRAN

> mydata <- sasxport.get("c:/mydata.xpt")

character variables are converted to R factors

95Research Computing

https://rc.hms.harvard.edu/

Importing Data from STATA

• In R: input Systat file

> library(foreign) #install the first time from CRAN

> mydata <- read.systat("c:/mydata.dta")

96Research Computing

https://rc.hms.harvard.edu/

Exporting Data

• Easy way to export a variable (vector, dataframe, matrix, etc):

> write.table(nameofvariable, file=“path/nameoffile.tsv”, sep=“\t”) #sep=“,” or “ “ etc

• Add

row.names=FALSE #turn off row names

col.names=FALSE #turn off column names

col.names=NA #Excel-like readability

quote=FALSE #turn off character string quoting

97Research Computing

https://rc.hms.harvard.edu/

R on O2

• Open a high-memory R session – better than a desktop!

• Log in to O2 with X11 enabled (important for graphics)

• Mac: Xquartz installed, in console

ssh -XY user123@o2.hms.harvard.edu

• Linux

ssh -XY user123@o2.hms.harvard.edu

• Windows: MobaXterm has X11 client built-in

ssh -XY user123@o2.hms.harvard.edu

98Research Computing

https://rc.hms.harvard.edu/

SLURM and O2

• SLURM is how we interact with the cluster

• Simple interactive session:

mfk8@login01:~$ srun --pty –p interactive –t 0-12:00 --mem 8G --x11 bash

(where 8G is memory requested)

• Graphics: SSH Keys!

srun: add --x11

sbatch: add --x11=batch

• Parallel/doParallel, BiocParallel, doMC libraries: run over multiple cores (-c up to 20
cores)

• Rmpi, SNOW, doMPI: run R scripts over multiple nodes (>20 cores)

99Research Computing

https://rc.hms.harvard.edu/

R Versions

• mfk8@login01:~$ module spider R

• Why does it matter what version of R you run?

Downstream packages may only work with certain versions of R.

• How to load a version of R (“extra” recommended)

mfk8@login01:~$ module load gcc/6.2.0 R/version

• Unloading R

module unload R/version

• Starting R from an interactive (not login!)

mfk8@compute-a:~$ R

100Research Computing

https://rc.hms.harvard.edu/

Managing your R packages on O2

• It is best to manage your own R packages to work with the version of R you select. In doing

so, there are no disruptions to your workflow.

• Setting up your O2 R library (1 time, not in .bashrc)

mfk8@login01:~$ mkdir -p ~/R-version

mfk8@login01:~$ export R_LIBS_USER=“~/R-version”

mfk8@login01:~$ echo 'R_LIBS_USER="~/R-version”’> $HOME/.Renviron

• If you must manually download a package (not through Bioconductor/CRAN etc), put the

package in the set up location (/home/mfk8/R-version)

• Accessing packages manually uploaded to your O2 R library (first time)

> install.packages("name-of-your-package“)

