
Nathalie Vladis, PhD

HMS Curriculum Fellow in Quantitative Skills

Intro to R Programming

& RStudio

R INTRO OBJECTIVES

• Familiarize ourselves with R Studio and some fundamental R commands

• Identify some key R objects that will help us store & manipulate data

• Use some popular mathematical R functions

• Discover R’s potential through a class example

WHY R?

• Its Free!

• Open-source license (anyone can download and modify the code)

• Runs everywhere

• Huge Community and Support

• Very popular amongst biologists

GETTING STARTED WITH
R & R STUDIO

WELCOME TO R STUDIO

WELCOME TO RSTUDIO!
A QUICK TOUR

Console

Syntax

Editor
Workspace

Management

Plotting Area &

Viewer

SOME BASIC SYNTAX

• To “print” in R, just type a variable or object’s name, R will display as much as
it can

• Commenting in R

means what appears afterwards is not computed

Your best friend when you write long scripts! (Use Often!)

• You can copy-paste multiple times, this overwrites

• Often “ and ‘ are used interchangeably – Be as consistent as you can!

Try it in the

RStudio!

INSPECTING YOUR WORKSPACE

> getwd()

> setwd(“your path”)

> library() # Lists the packages installed on your computer

> library(“package_name”) # Loads packages into your session

> sessionInfo() # Lists the packages loaded into memory

Try it in the

RStudio!

FINDING &
READING DATA

.CSV FILES

• Stands for comma-separated values

• A delimited text file that uses a comma to separate values

• A CSV file stores tabular data (numbers and text) in plain text

• One of the most commonly used file formats for data storage in the biomedical sciences

READING DATASETS WITH READ.CSV()

• First check your working directory!

> read.csv(“mydataset.csv”) # Read a file in the working directory

> read.csv(file.choose()) # File locator

Tip no 1: Do not forget to use

quotation marks!

Tip no 2: Check your operating system!

Syntax will differ from Mac to Windows to

Linux.

PATHS
If these formats don’t work for you, try:

> setwd(“C:\\Users\\mkf8\\Downloads”)

INSTALLING PACKAGES FROM CRAN

> install.packages(“ggplot2”) # Download and install package “ggplot2”

> install.packages() # Download and install packages

Try it!

GETTING HELP

> help.start() # Manuals and reference guides

> help(t.test) # Dispay the help page for function “t.test”

> ?t.test # … a shorthand for the same thing

> args(t.test) # Displays the argument names and corresponding default

values of a function

FUNCTION
ARGUMENTS

• CONSOLE INPUT:

> args(plot)

• CONSOLE OUTPUT:

function (x, y, …)

If you would like more information:

> help(plot)

COMMAND LINES & SCRIPTS

COMMAND LINES & SCRIPTS

SAVING & CLOSING YOUR SESSION

EXPLORING R

R OBJECTS

CREATING VARIABLES IN R

• Assign variables with a <- (traditional) or = (more modern way)

• A variable can be overwritten so be careful with naming

• Names can be UPPER/lowercase/./_ mixes, but can’t start with a number!

> my_number = 5

> my_number

[1] 5

Run the code!

VECTORS

• Basic way to store data

• c stands for “concatenate”: put these together as a vector

> myvector = c(3,5,7)

> myvector

[1] 3 5 7

VECTOR TYPES

• numeric:

> mynumeric = c(3,5,7)

• character:

> mycharacter = c(“bob”, “nancy”, “jose”)

• logical or Boolean:

> mylogical = c(TRUE, FALSE, TRUE)

CHANGING YOUR VECTOR TYPE

• General workflow:

> myvector = c(3,5,7)

> myvector_char = as.character(myvector)

> myvector

[1] “3”, “5”, “7”

• Where this comes in handy: when R says you are trying to do an operation on your

variable that is one type of vector, when it has to be another type.

• Can be done with other types e.g. matrices

• Use wisely

Run the code !

LISTS

• Like vectors with mixed data types (numeric, character, logical)

> mylist = list(3, “TP53”, FALSE)

[[1]]

[1] 3

[[2]]

[1] " TP53 "

[[3]]

[1] FALSE

• “unlist”-ing with unlist() a list tries to coerce the data to an atomic vector of all the

same type (lowest common denominator, usually a character)

Try it!

What happens when you

unlist mylist?

FACTORS
• Makes a vector nominal (able to be ordered by integers)

• Create a variable “gender” with 2 "male" entries and 4 "female" entries

> gender = c(rep("male", 2), rep("female", 4))

> gender_factor = factor(gender)

> gender_factor

[1] male male female female female female Levels: female male

Now 1=female, 2=male internally (alphabetically)

R now will treat ‘gender’ as a nominal variable with 2 levels

Notice how rep()

creates repeats with

minimal effort!

MATRICES
• Data must be all the same type (numeric, character, logical)

• Columns must have the same length

• Creation:

> mymatrix = matrix(c(1:6), nrow=3, ncol=2)

• Indexed by [row,column]

> mymatrix[1,1] #returns item in row 1, column 1

> mymatrix[1,] #returns all of row 1

> mymatrix[,1] #returns all of column 1

Run the code!

DATAFRAMES
AKA DF

• Very popular data structures!

• Subset of matrices allowing mixed types (numeric, character, logical)

> mydataframe = as.data.frame(mymatrix)

• You can give columns names so you can index by them

> names(mydataframe) = c(“column1name”, “column2name”)

DATAFRAMES
INDEXING & CONVERTING

• Can use matrix or $ notation

> mydataframe$column1name #works on column1

> mydataframe[,1] #works on column1

> mydataframe[“rowname1”,] #works on rowname1

> mydataframe[1,] #works on row 1

> mydataframe[-1,] #excludes row 1

• To turn a DF into a matrix for certain operations:

> mymatrix = as.matrix(mydataframe)

Note: This turns data into all the same type

Remember: the lowest

common denominator

is usually character!

ADDING & JOINING
ROWS & COLUMNS

• “rbind” to add a row or another df/matrix to a pre-existing dataframe/maxtrix

> mymatrix = rbind(mymatrix, newrow)

> mymatrix = rbind(mymatrix, matrixtwo)

• “cbind” to add a column or another df/matrix to a pre-existing dataframe/matrix

> mymatrix = cbind(mymatrix, newcol)

> mymatrix = cbind(mymatrix, matrixtwo)

A SELECTION OF HANDY FUNCTIONS

> class(object) #gives object class

> mode(object) #gives object type

> length(vector) #gives length

> str(object) #gives object structure

> dim(object) #gives matrix/data frame dimensions

> nrow(object) #gives number of rows

> ncol(object) #gives number of columns

Try it!

Explore bird_data with

these functions.

MORE HANDY FUNCTIONS!

> head(object) #gives first rows

> tail(object) #gives last rows

> summary() #quick statistics

Try it!

If you enter

head(bird_data), how

many rows does R

return?

EXPLORING R

BUILT-IN MATH FUNCTIONS

R IS ESSENTIALLY A FANCY CALCULATOR
AS IS ANY COMPUTER..

> 18 + 22 #addition

> 18 - 12 #subtraction

> 18 * 2 #multiplication

> 18 / 2 #division

> 18 %/% 4 #integer part of quotient

> 18 %% 4 #modulo (remainder)

> 18 ^ 2 #exponent

BUT BETTER!
R BUILT-IN MATH FUNCTIONS

> max(object) #max

> min(object) #min

> sum(object) #sum

> mean(object) #mean

> median(object) #median

> range(object) #range

> var(object) #variance

> sd(object) #standard deviation

> length(object) #number of values

Try it!

Practice .

Remember to encapsulate the vector in c().

Example: new_vec = c(1,2,3,4)

BUT BETTER!
MORE R BUILT-IN MATH FUNCTIONS!

> log(10) #natural log (base e)

> exp(2.302585) #antilog (e raised to power)

> log10(100) #log base 10

> sqrt(88) #square root

> factorial(8) #factorial

> choose(12, 8) #combinations (binomial coefficients)

> round(log(10), digits=3) #round to specified digits

> abs(18 / -12) #absolute value

BUT BETTER!
MORE R BUILT-IN MATH FUNCTIONS!

> runif(5) #random numbers from uniform distribution

> rnorm(5) #random numbers from normal distribution

SERIES SHORTCUTS

• Series: colon or “seq”

> 10:1

> seq(from, to, by)

> seq(1, 10, 2) # gives odd numbers

• Repeat

> rep(what, times)

> rep(10, 3)

LOGICAL OPERATIONS
• Test of condition: returns logical TRUE/FALSE

> test1= c(1,2,3)

> test1 > 2

[1] FALSE FALSE TRUE

>test1 >= 2

[1] FALSE TRUE TRUE

> which(test1 >= 2)

[1] 2 3

> test1[test1 >=2] # subsetting data based on equality condition

CONTROL STRUCTURES

FOR LOOPS IN R

for (val in sequence){

statement

}

myvector <- c(2,5,3)

for (val in myvector) {

print(val)

}

[1] 2

[1] 5

[1] 3

• Way to iterate over data

Try it !

WRITING FUNCTIONS IN R

• That’s how you can pack up multiple commands into a structure you can use again
and again!

multiplier = function(x,y) {

x * y

}

> num_1 = 3

> num_2 = 2

> multiplier(num_1, num_2)

Pro Tip:

Name your functions

wisely!

Brains are unreliable

machines..

HANDY TRICKS
THE APPLY FUNCTION FAMILY

• Returns an object as a result of applying a function to an entire data frame,
matrix or list

• The apply functions are marginally faster than a regular for loop

HANDY TRICKS
THE APPLY FUNCTION FAMILY

apply (to_what, how, function)

> mymatrix = matrix(c(1:6), nrow=3, ncol=2)

About how: “1” is to apply over rows, “2” is to apply over columns

> apply(mymatrix,1,sum)

[1] 5 7 9

> mymatrix

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6
Your Turn:

Try it with columns!

HANDY TRICKS
VARIATIONS OF APPLY

Ta
b
le

 t
a
ke

n
fr

o
m

 h
tt
p
s:

/
/
w

w
w

.g
ur

u9
9
.c

o
m

/
r-

a
p

p
ly

-s
a

p
p
ly

-t
a

p
p
ly

.h
tm

l

ONE MORE FOR THE ROAD!
REPLICATE()

replicate(repetitions, function(data))

[,1] [,2] [,3] [,4] [,5]

[1,] 0.9559560 -0.1175259 -0.7622642 -1.0084890 -1.5176103

[2,] -0.7266965 -2.4495685 -0.6873605 -0.1995848 -1.3064050

[3,] 0.4646987 -1.1877134 -0.9814098 -0.6633240 0.2236935

> replicate(5, rnorm(3))

Your Turn:

Sample the normal

distribution 3 times then

sum all of your

outcomes together!

> my_reps = replicate(5, rnorm(3))

HANDY PACKAGES
FOR DATA CLEANING AND MANIPULATION

Living the R Life:

An Example

CLASS EXAMPLE
OUR DATASET

If these formats don’t work for you, try:

> setwd(“C:\\Users\\mkf8\\Downloads”)

• Import your new dataset with headers and row names.

> tnbc = read.csv(‘tnbc.csv', header = T, row.names = 1)

CLASS EXAMPLE
IMPORTING & VIEWING DATA

• Can you remember which function allows us to take a peak at the first rows?

> head(tnbc)

• Obtain structure just like you did with bird_data.

CLASS EXAMPLE
QUICK STATS

• You can get some quick descriptive stats with summary()

> summary(tnbc)

Pro Tip:

Starting with some plotting and

descriptive statistics is the best way

to go!

Do not dive into inferential analysis

without doing some exploratory

work first.

CLASS EXAMPLE
TRANSPOSING DATA

• as.data.frame() will turn you data into a dataframe again!

> tnbc_mat = as.matrix(tnbc)

> tnbc_mat_t = t(tnbc_mat) # ‘t’ is for ‘transpose’

> head(tnbc_mat_t)

Your Turn:

Try getting some quick

stats on your newly

transposed dataset!

What happens?

• Need your data to read the other way?

• Turn it into a matrix, and transpose!

LET’S TRY SOME PLOTS!

CLASS EXAMPLE
BOXPLOT

> boxplot(geneset, xlab = 'Sample', ylab = 'Gene Values', main = 'An OK Boxplot')

CLASS EXAMPLE
BOXPLOT

> boxplot(geneset, xlab = 'Sample', ylab = 'Gene Values', main = 'A NEXT LEVEL Boxplot',

col = c('red', 'blue', 'green', 'yellow', 'grey', 'orange'))

Can you propose a way

to turn all TNBC mice in

one color and all control

in another?

CLASS EXAMPLE
GENE BOXPLOT

> boxplot(geneset_mat_t, xlab = 'Gene', ylab = 'Gene Value', main = 'Gene Boxplot')

CLASS EXAMPLE
HANDY PLOT OPTIONS

• main = “Title” # main title

• xlab= “x label” # x-axis label

• ylab=“y label” # y-axis label

• xlim(N,N) # x-axis start, stop

• ylim(N,N) # y-axis start, stop

• col =c(“color1”, “color2”) # vector with colors

• cex= N # size of text and symbols

• pch= N # plot point symbol type

There are many many

more!

CLASS EXAMPLE
BARPLOTS

• For barplot() you will need a matrix

> barplot(geneset_mat, xlab = 'Sample', ylab = 'Gene Value', main = 'Sample Bar Plot')

Your Turn:

Try to turn the plot blue!

CLASS EXAMPLE
HISTOGRAMS

• Plot a histogram of the frequency of values in our dataset

> hist(geneset_mat)

OTHER PLOT TYPES
AVAILABLE IN R

S
lid

e
 f

ro
m

 S
im

o
n

A
n
d

re
w

s
(B

a
b

ra
ha

m
B
io

in
fo

rm
a

ti
cs

)

Anything is

possible!

POPULAR PLOTTING PACKAGE
GGPLOT 2

Fr
o
m

 h
tt
p

:/
/
w

w
w

.c
o
o
k
b

o
o
k
-r

.c
o
m

http://www.cookbook-r.com/

CLASS ACTIVITY
BIRD BONES

BIRD BONES
CLASS ACTIVITY

• Have a look at the bird dataset.

https://www.kaggle.com/zhangjuefei/birds-bones-and-living-habits

BIRD BONES
CLASS ACTIVITY

1) Have a look at the bird dataset.

2) Plot a histogram of huml ‘Length of Humerus’ from the bird dataset.

3) What did you see?

Hint: You can use $ to subset columns from dataframes

4) What happens if you use plot() with ‘huml’ and ‘feml’?

5) Let’s do something crazy: plot() the entire dataset! What do you see?

Bonus Question

6) In your original plot (4), can you make the points colors match their ecological group
(column: ‘type’)

LET’S SUM IT UP!
WHAT DID WE LEARN IN TODAY’S LESSON?

• Intro to R objects

• How to do basic math in R

• Handle dataframes

• Basic Plotting in R

Thank you very much!

