
1

The O2 HPC cluster
The O2 cluster is composed of:

• Login Nodes, to connect remotely and submit jobs.

• Compute nodes, with high memory and multiple cores,
to process many jobs simultaneously

• Storage nodes, for hosting the users data in O2

• Scheduler, handles O2 resources and dispatches jobs on
computing nodes

Computing Nodes

Login

Nodes

Infrastructure

Storage Cluster

User

O2 currently includes:

— 390 Compute Nodes — 12260 CPU cores — 106 TiB of RAM — 136 GPU cards

2

The Slurm scheduler

The Slurm scheduler handles resources allocation on the O2 cluster and also provides accounting information about past jobs
and cluster utilization. Slurm periodically dispatches O2 jobs in two different ways:

• Direct Scheduling

At every cycle Slurm tries to dispatch pending jobs with the highest priority on available idle resources (memory, cpu cores,
gpu). If it cannot find available resources to dispatch a given high priority job, Slurm will determine when and where the
required resources will be available, and will schedule a future start time and node allocation for the high priority job.

• Backfill Scheduling

At every cycle Slurm tries to dispatch pending jobs with lower priority on available idle resources, as long as dispatching those
lower priority jobs will not impact the expected start time of the higher priority jobs

In either cycle Slurm checks only a limited number of jobs per user, and it uses the “priority value” of each job as sorting
criteria.

3

The Slurm scheduler
A simplified cpu-only scenario to understand jobs scheduling:

12
12
12
8

4
1

3
3
4
4

20
9
6
6

16
16
11
7

24
24

Cluster Computing Nodes

12

Idle CPU core

Allocated CPU core

WallTime allocated hours
remaining

JOB_5, 8 cpu cores for 12hrs

JOB_1, 6 cpu cores for 12hrs

JOB_4, 4 cpu cores for 12hrs

JOB_3, 2 cpu cores for 3hrs

JOB_6, 8 cpu cores for 12hrs

JOB_2, 5 cpu cores for 12hrs

N1 N2 N3 N4So
rt

ed
 b

y
pr

io
rit

y

Scheduled to start in 4 hours
Dispatched

Dispatched

Backfilled (dispatched)

JOB_3 would have been pending for at least
7 hours without backfilling, many O2 jobs
are backfilled not directly dispatched !!!

4

The Slurm scheduler
The job priority value is based on several factors:

• Age: proportional to the job’s pending time (since eligible), it has a significant impact on overall priority.

• JobSize: relates to the resources requested, has negligible contribution.

• Partition*: based on the partition used, this factor has a minor impact on jobs overall priority

• QOS: “Quality Of Service”, is a custom factor priority, by default set to zero. It can have a significant impact on job’s priority.

• TRES: not currently active, should always be zero

• FairShare: It is the most important factor in determining the overall job priority. It represents the fraction of resources
consumed by the user in the last 48 hours respect to all the other users in the cluster.

* The scheduler tries to dispatch first jobs submitted to partitions interactive and priority, independently by the jobs priority
values.

5

Why should you optimize your jobs ?

There are three good reasons why you should invest some time and optimize how your jobs are being executed on a cluster
environment.

1. Reduce pending time, increase your throughput and overall processing speed

2. Reduce the cost, if applicable

3. Avoid locking idle resources that could be allocated to other users

6

How NOT to optimize your jobs
The O2 cluster currently includes 12 different shared partitions (i.e. queues), one might think to optimize jobs by requesting
arbitrary wall time and submitting the jobs across different partitions. This is not a good idea because those partitions share
the vast majority of the computing resources.

short

medium

long

priority

interactive

mpi

gpu

gpu_quad

transfer

7

How to optimize your jobs

FEW
ER

RE
QUE

ST
RESOURCES

8

How to optimize your jobs
There are four factors that strongly impact jobs’ efficiency in O2

• Wasted resources on FAILED jobs

• Allocated but unused RAM

• Allocated but unused CPU cores

• Overestimated or arbitrary wall-time

9

Allocating memory in O2 jobs
The scheduler allocates by default 1000 MiB of RAM for each requested CPU core. 
Users can request a custom amount of memory per job using the flag --mem= and very often request much more memory
than what is really needed.

AVERAGE

ALLOCATED

MEMORY:

51004 G

VS

Allocating more memory than needed will:

• Unnecessarily increase the pending time of each job

• Consume more of your fair share, which will lower your jobs’ priority

• Increase the utilization cost (when applicable)

• Stop other people's jobs from starting

10

Allocating memory in O2 jobs
There are two typical behaviors we see on the cluster:

(A) users over-allocated memory for all jobs

(B) users over-allocated memory for 99% of the jobs. In this case it is always better to plan for the 99% and resubmit the failed

1%

In either case the users below would have increased their throughput and reduced the cost by requesting no more than 1/2 of
the memory originally requested.

A

B

11

Allocating CPU cores in O2 jobs
Users can request multiple CPU cores for their jobs. Requesting more cores will not automatically increase the job’s
performance!

The user requests several CPU assuming the job will run faster but…

1. The additional cores remain idle and no speedup is achieved. If your executable supports parallelization, make sure to pass
any specific flag required.

2. The parallelization does not scale very well and the overall benefit - cost balance is negative.

Allocating more CPU than needed will again:

• Unnecessarily increase the pending time

• Consume fair share, and lower jobs’ priority

• Increase the utilization cost (when applicable)

12

Allocating wall-time in O2 jobs
The majority of users tend to overestimate the wall time required, often setting it to the maximum value allowed.

Requesting too much wall-time does not impact fair-share or cost, however it reduces the possibility of jobs being backfilled.

Combine together very small jobs in larger batches, with each job running at least for 15 minutes, very short jobs can spend
more time pending than running.

13

Allocating resources efficiently in O2 jobs
How can you check memory, cpu and wall-time utilization to optimize your future jobs?

1. Check the summary reports that RC sends weekly and adjust your required resources accordingly

14

Allocating resources efficiently in O2 jobs
How can you check memory, cpu and wall-time utilization to optimize your future jobs?

2. Use our O2sacct wrapper to see detailed information about a custom subset of jobs, see https://harvardmed.atlassian.net/
l/c/XqnwHpgP for more details.

https://harvardmed.atlassian.net/l/c/XqnwHpgP
https://harvardmed.atlassian.net/l/c/XqnwHpgP

15

Allocating resources efficiently in O2 jobs
How can you check memory, cpu and wall-time utilization to optimize your future jobs?

3. Build your own custom query using Slurm native sacct command.

4. Ask for RCC help

rchelp@hms.harvard.edu

https://it.hms.harvard.edu/our-services/research-computing

mailto:rchelp@hms.harvard.edu
https://it.hms.harvard.edu/our-services/research-computing

16

Job priority rewards
Users that do not waste too many computational resources are awarded with an extra priority QoS, equivalent to 30% extra
fair-share.

Our goal is for O2 users to check resources actually consumed and adjust job submissions accordingly.

It is often not possible to predict exactly memory and/or run time, reasonable memory and wall-time buffers are OK and
advised!

More details are available on our wiki page at https://harvardmed.atlassian.net/l/c/03G8RYP1

https://harvardmed.atlassian.net/l/c/03G8RYP1

